
Project no. 265863

ACCESSACCESS

Arctic Climate Change, Economy and SocietyArctic Climate Change, Economy and Society

Instrument: Collaborative Project
Thematic Priority: Ocean.2010-1 “Quantification of climate change impacts on economic sectors in 

the Arctic”

D4.45 – Recommendations on future Arctic observing 
systems

Due date of deliverable: 31/01/2015 

Actual submission date: 30/01/2015 

Start date of project: March 1st, 2011

Duration: 48 monthsOrganisation name of lead contractor for this deliverable: FastOpt

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level 

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)
x



Deliverable report: D4.45 – Report future Arctic Observing System 
for save resource extraction

Contents

Table of Contents

1) Executive Summary............................................................................................................................................3

2) Detailed Study.....................................................................................................................................................4

 Version: 1
Page 2 of 4



Deliverable report: D4.45 – Report future Arctic Observing System 
for save resource extraction

1) Executive Summary

The  Arctic  climate  system  is  undergoing  a  rapid  transition.  Such  changes,  in 
particular  reductions  in  sea-ice  extent,  are  impacting  coastal  communities  and 
ecosystems and are enhancing the potential for resource extraction and shipping. In 
this context, the ability to anticipate anomalous ice conditions and in particular sea-
ice hazards associated with seasonal-scale and short term variations in ice cover is 
essential.  For example, in 2012, despite a long-term trend of greatly reduced ice 
cover in the Chukchi Sea off Alaska’s coast, ice incursions and associated hazards 
led  to  early  termination  of  the  exploration  season.  In  this  context,  high-quality 
predictions  of  the  ice  conditions  are  of  paramount  interest.  Such predictions  are 
typically performed by numerical models of the sea ice-ocean system. Wtihin WP 1, 
FastOpt and OASys developed a framework for a modelling system to assist  the 
design of the Arctic Observing System. The Arctic Observational  Network Design 
(AOND)  system  was  developed  around  the  model  of  the  coupled  Arctic  sea-ice 
ocean system NAOSIM. The AOND system can evaluate candidate observational 
networks  in  terms  of  their  constraint  on  target  quantities  of  interest,  e.g. 
predicted  ice  area  or  volume for  a  given  region.  Within  WP 4 the  system  was 
adapted to specific requirements for resource extraction and used to  evaluate 
hypothetical observational networks. For a demonstration, we evaluated two 
idealised flight transects derived from NASA’s Operation  IceBridge airborne 
ice  surveys in terms of their potential to improve  ten-day to five-month sea-ice 
forecasts. As target regions for the forecasts we selected the Chukchi Sea, an area 
particularly relevant for maritime traffic and offshore resource exploration as well as two 
areas related to the Barnett Ice Severity  Index (BSI), a standard measure of 
shipping conditions along the Alaskan coast that is routinely issued by ice services. 
Our analysis quantifies the benefits of sampling upstream of the target area and of 
reducing the sampling uncertainty. We demonstrate how observations of sea-ice 
and snow thickness can constrain the ice area in a target region and quantify the 
complementarity of combining two flight transects. We further quantify the 
benefit of improved atmospheric forecasts and a well-calibrated model. This is the 
first  time,  such  a  quantitative  analysis  of  the  relative  benefit  of  different 
sampling strategies is performed for the Arctic. The evaluation of flight transects 
is only one application of the AOND system. Further potential applications are the 
evaluation  of  remote  sensing  concepts,  potentially  in  combination  with  in  situ 
measurements.  

For our analysis we deliberately selected the year 2007, a year of particularly low ice 
extent,  which  one may regard as representative  in terms of  future ice conditions 
under climate change. Clearly, our quantitative results are specific to the conditions 
in this year. The present study has thus the character of a demonstration, and we 
focus  here  on  general  lessons.  Our  most  general  finding  is  that  the  network 
performance depends on the question we ask, i.e. on the target quantity. Next, 
the longer the forecast time, the further upstream we have to sample,  rather 
than sampling over the target area. Further, we demonstrated in a quantitive way 

 Version: 1
Page 3 of 4



Deliverable report: D4.45 – Report future Arctic Observing System 
for save resource extraction

how the  model dynamics transfer the observational information on one set of 
variables (snow and ice thickness) to another variable (ice area).

When defining candidate networks to be evaluated it is  essential to take logistic 
constraints  into  account.  An  example  of  a  logistic  constraint  is  the  physical 
accessiblity of an observational site, given the harsh environmental conditions in the 
Arctic. Another logistic constaint can be limited accessiblity for political reasons. This 
could apply, for example, to the Sibirian coastline. Logistic constraints can also be of 
technical nature, e.g. limited reach of an aircraft carrying the instrument. The AOND 
system is  ignorant  of  such constraints,  unless it  is  informed by the user  through 
definition  of  logistically  feasible  candidate  networks.  At  this  point  know  how  of 
observationalists is essential. 

An essential  input to the tool is the data uncertainty,  which is the combination of 
uncertainties in the observational process and in modelling its counterpart (model 
uncertainty).  Our  models  are  based  on  fundamental  equations  that  govern  the 
processes controlling ice conditions. Uncertainty in model predictions arises from four 
sources:  first,  there is  uncertainty  in  the  atmospheric  forcing data  (such as  wind 
velocity or temperature) driving the relevant processes. Second, there is uncertainty 
regarding the formulation of individual processes and their numerical implementation 
(structural uncertainty). Third, there are uncertain constants (process parameters) in 
the  formulation  of  these  processes  (parametric  uncertainty).  Fourth,  there  is 
uncertainty about the state of the system at the beginning of the simulation (initial  
state).  Typically  the  model  uncertainty  is  assessed  by  modellers  and  the 
observational uncertainty by observationalists, i.e. the AOND tool can be operated 
best by a team consisting of observationalists and modellers.

We note that the above-mentioned model uncertainty to be provided to the tool does 
not necessarily need to refer to the model we use. As long as the response functions 
of our model are approximately correct, we can use the present system to simulate 
the observational impact on a assimilation system around a different model. For QND 
results to be valid beyond the model at hand, one has to used a well-validated model,  
which includes all relevant processes. 

The current AOND system has the flexibility to also evaluate the potential of space 
missions or further in situ sampling strategies. There are a number of obvious ways 
to refine the present system. It can be extended to cover climate conditions of further 
years,  possibly  also  representative  of  the  state  of  the  Arctic  as  expected  under 
climate change. Also, one could add oceanic observations, further target quantities, 
or  extend  the  control  vector.  Furthermore,  rather  than  operating  Arctic-wide,  the 
same concept can be applied on smaller regional scale.

2) Detailed Study
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Abstract. We present a quantitative network design (QND) study of the Arctic sea ice-ocean system

using a software tool that can evaluate hypothetical observational networks [in relation to external

constraints] in a variational data assimilation system. For a demonstration, we evaluate two ide-

alised flight transects derived from NASAs Operation IceBridge airborne ice surveys in terms of

their potential to improve ten-day to five-month sea-ice forecasts. As target regions for the forecasts5

we select the Chukchi Sea, an area particularly relevant for maritime traffic and offshore resource

exploration, as well as two areas related to the Barnett Ice Severity Index (BSI), a standard measure

of shipping conditions along the Alaskan coast that is routinely issued by ice services. Our analysis

quantifies the benefits of sampling upstream of the target area and of reducing the sampling uncer-

tainty. We demonstrate how observations of sea-ice and snow thickness can constrain ice and snow10

variables in a target region and quantify the complementarity of combining two flight transects. We

further quantify the benefit of improved atmospheric forecasts and a well-calibrated model.

1 Introduction

The Arctic climate system is undergoing a rapid transition. Such changes, in particular reductions in

sea-ice extent, are impacting coastal communities and ecosystems and are enhancing the potential for15

resource extraction and shipping. In this context, the ability to anticipate anomalous ice conditions

and in particular sea-ice hazards associated with seasonal-scale and short-term variations in ice cover

is essential. For example, in 2012, despite a long-term trend of greatly reduced ice cover in the

Chukchi Sea off Alaskas coast, ice incursions and associated hazards led to early termination of the

exploration season (Eicken and Mahoney, 2014). In this context, high-quality predictions of the ice20

conditions are of paramount interest. Such predictions are typically performed by numerical models
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of the sea ice-ocean system. These models are based on fundamental equations that govern the

processes controlling ice conditions. Uncertainty in model predictions arises from four sources: first,

there is uncertainty in the atmospheric forcing data (such as wind velocity or temperature) driving the

relevant processes. Second, there is uncertainty regarding the formulation of individual processes25

and their numerical implementation (structural uncertainty). Third, there are uncertain constants

(process parameters) in the formulation of these processes (parametric uncertainty). Fourth, there is

uncertainty about the state of the system at the beginning of the simulation (initial state).

Observational information can be exploited to reduce these uncertainties. Currently there are sev-

eral initiatives underway to extend and consolidate the observational network of the Arctic climate30

system, ranging, e.g., from the International Arctic Systems for Observing the Atmosphere and Sur-

face (IASOAS) to the Global Terrestrial Network for Permafrost (GTN-P). Ideally, all observational

data streams are interpreted simultaneously with the process information provided by the model to

yield a consistent picture of the state of the Arctic system that balances all the observational con-

straints, taking into account the respective uncertainty ranges. Data assimilation systems that tie into35

prognostic models of the Arctic system are ideal tools for this integration task because they allow a

variety of observations to be combined with the simulated dynamics of a model.

Quantitative Network Design (QND) is a technique that aims at designing an observational net-

work with optimal performance. The approach is based on work by Hardt and Scherbaum (1994)

who optimised the station locations for a seismographic network. It was first applied to the climate40

system by Rayner et al. (1996), who optimised the spatial distribution of atmospheric measurements

of carbon dioxide. A series of QND studies (Rayner and O’Brien, 2001; O’Brien and Rayner, 2002;

Rayner et al., 2002) demonstrated the feasibility of the network design approach and delineated the

requirements for the implementation of the first satellite mission designed to observe atmospheric

CO2 from space (Crisp et al., 2004). Since, the technique has been routinely applied in the design of45

CO2 space missions (Patra et al., 2003; Kadygrov et al., 2009; Kaminski et al., 2010; Rayner et al.,

2014) and the extension of the in situ sampling network for atmospheric carbon dioxide. Recent

examples focus on in situ networks over Australia (Ziehn et al., 2014) and South Africa (Nickless

et al., 2014). The design of a combined atmospheric and terrestrial network of the European carbon

cycle is addressed by Kaminski et al. (2012).50

The present study applies the QND concept to the Arctic sea ice-ocean system. It describes the

Arctic Observational Network Design (AOND) system, a tool that can evaluate the performance

of observational networks comprising a range of different data streams. We illustrate the utility of

the tool by evaluating the relative merits of alternate airborne transects within the context of NASAs

Operation IceBridge (Richter-Menge and Farrell, 2013; Kurtz et al., 2013a), assessing their potential55

to improve ice forecasts in the Chukchi Sea and along the Alaskan coast.
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2 Methods

Our AOND system evaluates observational networks in terms of their impact on target quantities

in a data assimilation system. Both the data assimilation system and the AOND system are built

around the same model of the Arctic ocean sea-ice system. Below, we first present the model, then60

the assimilation system and finally the QND approach operates on top of this model.

2.1 NAOSIM

The model used for the present analysis is the coupled ice-ocean model NAOSIM (North At-

lantic/Arctic Ocean Sea Ice Model, Kauker et al. (2003)). NAOSIM is based on version 2 of the

Modular Ocean Model (MOM-2) of the Geophysical Fluid Dynamics Laboratory (GFDL). The ver-65

sion of NAOSIM used here has a horizontal grid spacing of 0.5◦ on a rotated spherical grid. The

rotation maps the 30◦W meridian onto the equator and the North Pole onto 0◦E. Hence, the model’s

x- and y-directions are different from the zonal and meridional directions. In the vertical it is resolved

by 20 levels, their spacing increasing with depth. The ocean model is coupled to a sea-ice model

with viscous-plastic rheology. At the open boundary near 50◦ N the barotropic transport is prescribed70

from a coarser resolution version of the model that covers the whole Atlantic northward of 20◦ S

(Koeberle and Gerdes, 2003). Atmospheric forcing (10m-wind velocity, 2m-air temperature, 2m-

dew point temperature, total precipitation, and total cloud cover) is taken from the National Centers

for Environmental Prediction/National Centre for Atmopsheric Reserach (NCEP/NCAR) reanalysis

(Kalnay and Coauthors, 1996). This study is based on a model integration from 1 April 2007 to 3175

August 2007. The initial state of this integration is the final state of a hindcast from January 1948

to end of March 2007, forced by NCEP/NCAR reanalyses and in turn initialized from PHC (Steele

et al., 2001) (ocean temperature and salinity) and a constant ice thickness of 2m with 100% ice cover

where the air temperature is below the freezing temperature of the ocean’s top layer. The model’s

process formulations depend on a number of uncertain parameters. Table 1 summarises atmospheric80

forcing fields, initial fields and lists a subset of the model’s relevant process parameters.

2.2 Assimilation

The variational assimilation system NAOSIMDAS (Kauker et al., 2009, 2010) operates through

minimisation of a cost function that quantifies the fit to all observations plus the deviation from prior

knowledge on a vector of control variables x:85

J(x̃)=
1

2

[
(M(x̃)−d)TC(d)−1(M(x̃)−d)+(x̃−x0)

TC(x0)
−1(x̃−x0)

]
(1)

where M denotes the model, considered as a mapping from the control vector to observations, d

the observations with data uncertainty covariance matrix C(d), x0 the vector of prior values of the

control variables with uncertainty covariance matrix C(x0), and the superscript T is the transposed.

The control variables are typically a combination of the initial state, the atmospheric forcing and the90
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process parameters. The data uncertainty C(d) reflects the combined effect of observational C(dobs)

and model error C(dmod) :

C(d)2 =C(dobs)
2+C(dmod)

2 (2)

C(dmod) captures all uncertainty in the simulation of the observations except for the uncertainty in

the control vector, because this fraction of the uncertainty is explicitly addressed by the assimilation95

procedure through correction of the control vector.

2.3 QND

We provide a brief description of the methodological background for QND, which follows Kaminski

and Rayner (2008). The approach is based on propagation of uncertainty from the data to a target

quantity of interest. The target quantity can be any aspect that is extractable from a simulation with100

the underlying model, for example, the sea-ice concentration integrated over a particular domain and

time period.

QND proceeds in two steps. In the first step, the second derivative (Hessian) of the cost function

(equation (1)) is used to approximate the inverse of the covariance matrix C(x) of posterior uncer-

tainty of the control vector, which quantifies the uncertainty ranges of the control variables that are105

consistent with uncertainties in the observations and the model. Denoting the linearisation of the

model by M ′ we can approximate this posterior uncertainty by

C(x)−1 =M ′TC(d)−1M ′+C(x0)
−1 . (3)

In the second step, the linearisation N ′ (Jacobian) of the model N used as a mapping from the

control vector to target quantities is employed to propagate the uncertainties in the control vector110

forward to the uncertainty in a target quantity σ(y):

σ(y)2 =N ′C(x)N ′T +σ(ymod)
2 . (4)

If the model was perfect, σ(ymod) would be zero. In contrast, if the control variables were perfectly

known, the first term on the right hand side would be zero.

We note that (through equation (3) and equation (4)) the posterior target uncertainty solely depends115

on the prior and data uncertainties as well as the linearised model responses of simulated observation

counterparts and of target quantities. The approach does not require real observations, and can thus

be employed to evaluate hypothetical candidate networks. Candidate networks are defined by a set

of observations characterised by observational data type, location, time, and data uncertainty. Hence,

the QND approach does not require running the assimilation system. By a network we understand120

the complete set of observations, d, used to constrain the model. The term network is not meant to

imply that the observations are of the same type or that their sampling is coordinated. For example,

a network can combine in situ and satellite observations.
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Fig. 1. Target Regions: Chukchi (blue); North of Barrow (NOB, green) Bering Strait to Prudhoe Bay (BS2PB,

red).

In practice, for pre-defined target quantities and observations, model responses can be pre-

computed and stored. A network composed of these pre-defined observations, can then be evaluated125

in terms of the pre-defined target quantities without further model evaluation. Only matrix algebra

is required to combine the pre-computed sensitivities with the data uncertainties. This aspect is ex-

ploited in our AOND system The linearised response functions were computed by the tangent linear

version of NAOSIM generated from the model’s source code through the automatic differentiation

tool TAF (Giering and Kaminski, 1998).130

3 Experimental setup

3.1 Target Quantities

The goal of this study is to explore the utility of the AOND system in guiding observations for

short-term to seasonal-scale sea-ice predictions. Ice forecasting at these time scales has been identi-

fied as a high priority in the context of safe maritime operations (Richter-Menge, 2012; Kurtz et al.,135

2013a; Eicken, 2013) management of marine living resources (Robards et al., 2013) and food secu-

rity for indigenous communities (Brubaker et al., 2011). Here, we focus on the first two issues in

the Chukchi and Beaufort Seas north of Alaska (figure 1 and figure 2), which are experiencing some

of the highest reductions in summer ice concentration anywhere in the Arctic, along with major

offshore hydrocarbon exploration and potential impacts on protected species such as walrus (Eicken140

and Mahoney, 2014). Thus, the selection of target quantities for the AOND system seeks to evaluate

and improve predictions aimed at the information needs of stakeholders and resource managers for
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this region.

For all regions delineated in figure 1, we use spatial averages of ice concentraton (fraction of area

covered by ice, regardless of the 15% floor used in the definition of ice extent), ice thickness, and145

snow thickness. For each of the target regions we look at these quantities on different days or time

periods. For the target region Chukchi we use the above three quantities for each of April 10, June 30,

and August 31, yielding a total of nine target quantities. In order to specifically address information

needs with respect to safe shipping between Bering Strait and central and eastern Beaufort Sea

(including supply of coastal communities and the oil industry hub at Prudhoe Bay, offshore resource150

exploration and transits through the Northwest Passage), we evaluate an additional set of target

quantities derived from the Barnett Ice Severity Index (BSI). The BSI has developed into a standard

measure of shipping conditions and potential hazards encountered along the Alaskan coast and at a

critical chokepoint of the Northwest Passage and is routinely issued by ice services (Barnett, 1976).

(Drobot, 2003) has examined the predictive skill of statistical models in BSI seasonal forecasts.155

The BSI is a composite of eight aspects of summer ice conditions (see Table 2), four related to the

distance of the ice pack north of Point Barrow (NOB) in mid-August and mid-September and four

related to the timing of ice retreat along the sea route from Bering Strait to Prudhoe Bay during the

entire navigation season (BS2PB). In replicating these variables in condensed way, we identify the

two target regions as shown in figure 1. The target region NOB covers a corridor of 50 km (one160

grid cell) width extending from Point Barrow to 70◦ N on August 10 and 31. We use August 31 in

contrast to September 15 (which is used in the definition of the BSI), because from end of August

to mid September 2007 the ice edge moved northwards of 70◦ N. For the region BS2PB, in keeping

with the BSI we use the time period from May to August.

3.2 Control Variables165

In our variational assimilation system the largest possible control vector is the superset of initial

and surface boundary conditions as well as all parameters in the process formulations. To keep our

AOND system numerically efficient, two- and treedimensional fields are grouped into regions. We

proceeded by dividing the Arctic domain into nine regions (figure 2). In each of these regions we add

a scalar perturbation to each of the forcing fields (indicated in Table 1 by the type boundary). Like-170

wise we add a scalar perturbation to five initial fields (indicated in Table 1 by the type initial). For the

ocean temperature and salinity the size of the perturbation is reduced with increasing depth. Finally

we have selected 18 process parameters from the sea ice-ocean model. This procedure resulted in a

total of 128 control variables, a superset of the set of control variables identified by (Sumata et al.,

2013) to have largest impact on the simulation. Unlike the study by Kauker et al. (2009) the control175

vector used here also includes process parameters. We conducted sensitivity experiments in which

we remove components from the control vector. For example, removing the atmospheric forcing

explores the (hypothetical) case of a perfect seasonal atmospheric forecast and removing the process

6



Fig. 2. Regions used in the study. 1 (light plum) central Arctic. 2 (dark blue) North Atlantic, and then

counterclockwise to 7 (yellow) Bering Strait/Chukchi Sea, 8 (orange) Beaufort Sea, 9 (red).

parameters the (hypothetical) case of a perfectly calibrated model.

The prior uncertainty of the control variables, C(x0) (see equation (1) and equation (3)) is, as-180

sumed to have diagnoal form, i.e. there are no correlations among the prior uncertainty relating to

different components of the control vector. The diagnonal entries are the square of the prior standard

deviation. For process parameters this standard deviation is estimated from the range of values typi-

cally used within the modelling community. The standard deviation for the components of the initial

state, is based on a model simulation over the past twenty years and computed for the twenty member185

ensemble corresponding to all states on the same day of the year. Likewise the standard deviation

for the surface boundary conditions is computed for the twenty member ensemble corresponding to

all five-month forecast periods starting on the same day of the year.

3.3 Observational Networks

There are various types of observations sampling the Arctic ocean sea-ice system, many of which190

are potentially suitable for assimilation into a model like NAOSIMDAS. Our AOND system focuses

on observations of ice concentration, snow and ice thickness. It provides response functions for

each of these three observables, for each surface grid cell, and for each day of the simulation period

(i.e. about 5 million possible observations) with a user-defined data uncertainty. In this study we

7



Fig. 3. Flight transects: Chukchi to Fram (C2F, blue); Beaufort to Fram (B2F, red)

demonstrate the application and potential utility of the system in evaluating the relative merits and195

quantitative contribution to improving sea-ice forecasts for two alternate ice-thickness airborne sur-

vey profiles. This example is based on the need for objective guidance on flight routing as part of

NASAs Operation IceBridge, an airborne laser altimeter and snow radar campaign meant to provide

information on the mass budget of the Arctic ice pack (Richter-Menge and Farrell, 2013). Recent

work has demonstrated the utility of such data, collected in spring for initialization and constraints200

on seasonal forecasts of summer ice extent (Lindsay et al., 2012; Kurtz et al., 2013a). Based on an

evaluation of flown and hypothetical IceBridge transects, we evaluate the impact of simulated mea-

surements along two transects within AOND. The first is a transect from Bering Strait to Fram Strait,

which we denote by Chukchi to Fram (C2F, figure 3, blue colour) and the second from Beaufort Sea

to Fram Strait which we denote by Beaufort to Fram (B2F, figure 3, red colour). Both flights are205

assumed to take place on April 5, 2007. The observations consist of model output of ice and snow

thickness at each grid cell that intersects with the transect as indicated in figure 3. The default case

specifies a data uncertainty of 30 cm for both quantities. To explore the sensitivity of the results

with respect to the data uncertainty, we also test a data uncertainty of 10 cm. While the former is

at the lower end of what is expected for IceBridge altimeter data (Kurtz et al., 2013b), the latter210

8



Panel a

Panel b

Fig. 4. Uncertainty reduction for the Chukchi target area for flight transect C2F (panel a) and B2F (panel b).

corresponds to the lower bounds of airborne electromagnetic induction measurements (Haas et al.,

2009).

4 Results and discussion

Figure 4 shows the performance of each transect in improving forecasts over the Chukchi target

region. We define the uncertainty reduction relative to the case without observational constraints,215

where the prior uncertainty in the control vector (see section 3.2) is propagated to the three target

quantities. Overall we note a larger impact of C2F on the short-term forecast (10 days) while for

B2F the impact increases for the mid-term forecast (3 months). C2F surpasses B2F with respect to

the impact on predicted ice concentration and snow thickness, while its impact is marginally smaller

9



for ice thickness. For the 10-day forecast C2F has a much larger impact on predicted ice and snow220

thickness than on ice concentration. This is mostly a result of the flights observing specifically the

former two quantities, whereas the model dynamics require some time to transfer any constraints

on snow and ice thickness into constraints on ice concentration. Moreover, ice concentration in

this region is also strongly dependent on factors other than snow and ice thickness, in particular

during spring and early summer when the role of wind forcing greatly exceeds that of the other two225

variables.

Mathematically, through N ′ in equation (4), each target quantity defines a one dimensional sub-

space (target direction, Kaminski et al. (2012)) of the space spanned by the control vector (control

space). All control vectors v perpendicular to the target direction yield N ′v=0. Similarly, through

M ′ in equation (3) each observation defines a second one-dimensional sub-space of the control230

space, the observed direction. The better the observed direction projects onto the target direction,

the more efficient is the observation in reducing the uncertainty in the target quantity. According to

equation (3) the uncertainy reduction increases with the response of the observable to a change in

the control vector (M ′) and decreases with the data uncertainty. Figure 5 provides a visualisation

of N ′, which shows the response of the three target quantities to a change in each of the control235

variables by one standard deviation of prior PDF (table 1). This provides two pieces of information:

First, it shows the target direction, second it shows the size of the impact of an uncertainty reduction

in the target direction. We note that the initial conditions of ice and snow have highest impact for

the short-term forecast. For the mid-term forecast, atmospheric forcing and model parameters also

gain in importance. For the interpretation of taux and tauy recall that the model operates on a rotated240

coordinate system. Taking the rotation into account, for regions 6, 7, and 8 figure 6 shows the

direction in which a change of tau yields the largest increase in ice thickness. Adding a 25 degrees

Ekman deflection the change of ice motion is towards the target region. For the long-term forecast,

the impacts are generally small, because there is little ice left in the target area.

Figure 7 shows the performance of each transect for improving forecasts for the target region245

covering the coastal ocean from Bering Strait to Prudhoe Bay (BS2PB). They show similar per-

formance with B2F being superior for snow thickness and C2F for ice thickness and area. As an

additional test case we evaluate the combination of the two transects (panel c), which clearly shows

their complementarity.

Figure 8 shows the response of the three target quantities to a 1 prior sigma change in each of the250

control variables. The impact of wind stress dominates. For both, region 7 and 8, figure 9 shows the

direction in which a change of tau yields the largest increase in ice thickness. Adding a 25 degrees

Ekman deflection the change of ice motion is towards the intersecton of the respective region’s

coast line with the target area BS2PB. Parameter pstar has a positive impact, because it yields more

rigid ice. Parameter h0 has a negative impact: Increasing h0 yields thicker newly formed ice and255

consequently reduces the ice concentration.
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Panel a

Panel b

Panel c

Fig. 5. Sensitivity of target quantities over Chukchi area for 10 day (panel a), 91 day (panel b) and 153 day

(panel c) forecasts to 1 sigma prior uncertainty change in each control variable. Units of target quantities (and

their sensitivities): ice concentration (a) (0-1); ice thickness (h) in m; snow thickness (hsn) in m.
11



Fig. 6. Wind stress direction with highest impact of tau component in control vector on ice thickness in Chukchi

target region. Colour indicates magnitude.

Figure 10 shows the performance of each transect for improving forecasts over the NOB target

region. The performance of B2F is much better than that of C2F for both forecast times. This result

appears counter-intuitive, because C2F is much closer than B2F, but can be explained through the

influence of the westward circulation prevailing in the waters off the Alaskan coast (Eicken and260

Mahoney, 2014). For forecast times of 4-5 months, an upstream observation is associated with much

more predictive skill than an observation directly over the target area. In fact the same mechanism

explains the previously mentioned higher uncertainty reduction of B2F for the long-term forecast

in the Chukchi area. For the target area BS2PB none of the transects dominate, because the target

period is an integral from forecast months 2 to 5.265

Figure 11 shows the response of the three target quantities (on both, August 10 and 31) to a 1

prior sigma change in each of the control variables. We note the highest impact for tauy in region

8 (positive impact of southwest increase) leading to more ice in the target region (see figure 12).

Furthermore there is relatively high impact of other atmospheric forcing variables, but also of some

parameters (the albedo of melting ice, albm, and the ice strength parameter, pstar) and the ice initial270

conditions. There is generally little difference in the responses for the two forecast periods. This is

an indication of the robustness of our linearisation of the coupled ocean sea-ice system and confirms

an analysis of Kauker et al. (2009) who found, for the same model, moderate difference between the

linearisation and finite size perturbations.

Figure 13 shows the sensitivity of the performance of (the superior) B2F transect with respect to275

various impact factors. The reduction in data uncertainty from 0.3 m to 0.1 m for both ice and snow

thickness yields a considerable improvement in performance (panel a). The effect is particularly

pronounced for ice area. Reducing the prior uncertainty for the atmospheric forcing to zero mimics

the availability of a perfect seasonal atmospheric forecast. Under this assumption, the performance

of the B2F transect is strongly increased (panel b). Likewise a reduction of the prior uncertainty for280

all process parameters mimics a perfectly calibrated model. Its effect on the performance of the B2F
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Panel a

Panel b

Panel c

Fig. 7. Uncertainty reduction for target area BS2PB for flight transsect C2F (panel a) and B2F (panel b) and

both (panel c). 13



Fig. 8. Sensitivity of target quantities for BS2PB area to 1 sigma prior uncertainty change in each control

variable. Units of target quantities (and their sensitivities): ice concentration (a) (0-1); ice thickness (h) in m;

snow thickness (hsn) in m.

Fig. 9. Wind stress direction with highest impact of tau component in control vector on ice thickness in BS2PB

target region. Colour indicates magnitude

14



Panel a

Panel b

Fig. 10. Uncertainty reduction for target areas NOB for flight transect C2F (panel a) and B2F (panel b).

transect is relatively small (panel c). Interestingly, combining the perfectly calibrated model and the

perfect atmospheric forecast assumptions doubles the uncertainty reductions compared to the perfect

atmospheric forecast assumptions alone.

5 Conclusions285

We presented an Arctic Observational Network Design (AOND) System that evaluates hypothetical

observational networks of the coupled ocean sea-ice system in terms of their constraint of target

quantities of interest within an assimilation system.

We apply the tool to evaluate the potential of two flight transects to reduce uncertainties in ice

forecasts over periods from ten days to five-months for regions with high offshore (Chukchi Sea)290
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Panel a

Panel b

Fig. 11. Sensitivity of target quantity over NOB area for 132 day (panel a), and 153 day (panel b) forecasts to

1 sigma prior uncertainty change in each control variable. Units of target quantities (and their sensitivities): ice

concentration (a) (0-1); ice thickness (h) in m; snow thickness (hsn) in m.
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Fig. 12. Wind stress direction with highest impact of tau component in control vector on ice thickness in NOB

target region. Colour indicates magnitude

or shipping activity (North-West Passage). For our analysis we deliberately selected the year 2007,

a year of particularly low ice extent, which one may regard as representative in terms of future ice

conditions under climate change. Clearly, our quantitative results are specific to the conditions in

this year. The present study has thus the character of a demonstration, and we focus here on general

lessons. Our most general finding is that the network performance depends on the question we295

ask, i.e. on the target quantity. Next, the longer the forecast time, the further upstream we have

to sample, rather than sampling over the target area. Further, we demonstrated in a quantitive way

how the model dynamics transfer the observational information on one set of variables (snow and

ice thickness) to another variable (ice area).

When defining candidate networks to be evaluated it is essential to take logistic constraints into300

account. Also, an essential input to the tool is the data uncertainty, which is the combination of

uncertainties in the observation and in modelling its counterpart (model uncertainty). These two

requirements make clear that a QND tool can only be reasonably operated by a team consisting of

observationalists and modellers.

We note that the above-mentioned model uncertainty to be provided to the tool does not nec-305

essarily need to refer to the model we use. As long as the response functions of our model are

approximately correct, we can use the present system to simulate the observational impact on a as-

similation system around a different model. For QND results to be valid beyond the model at hand,

one has to used a well-validated model, which includes all relevant processes.

The current AOND system has the flexibility to also evaluate the potential of space missions or310

further in situ sampling strategies. There are a number of obvious ways to refine the present system.

It can be extended to cover climate conditions of further years, possibly also representative of the

state of the Arctic as expected under climate change. Also, one could add oceanic observations,

further target quantities, or extend the control vector. Furthermore, rather than operating Arctic-
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Panel a

Panel b

Panel c

Panel d

Fig. 13. Uncertainty reduction for target areas NOB for flight transect B2F with data uncertainty of 0.1 m (panel

a), the assumption of perfectly known atmospheric forcing (panel b), the assumption of a perfectly calibrated

model (panel c), the assumption of perfectly known atmospheric forcing and of a perfectly calibrated model

(panel d),
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wide, the same concept can be applied on smaller regional scale.315

Acknowledgements. This work is funded by the European Commission through its Seventh Framework Pro-

gramme Research and Technological Development under contract number 265863 (ACCESS).

19



References

Barnett, D. G., A practical method of long-range ice forecasting for the north coast of alaska, part i, Technical

Report TR-1. Suitland, Maryland: Fleet Weather Facility, 1976.320

Brubaker, M., J. Berner, R. Chavan, and J. Warren, Climate change and health effects in northwest alaska, Glob.

Health Action, 4, 2011.

Crisp, D., et al., The orbiting carbon observatory (oco) mission. trace constituents in the troposphere and lower

stratosphere, Advances in Space Research, 34, 700 – 709, 2004.

Drobot, S., Long-range statistical forecasting of ice severity in the beaufort-chukchi sea, Weather and Forecast-325

ing, 18, 1161–1176, 2003.

Eicken, H., Arctic sea ice needs better forecasts, Nature, 497, 431–433, 2013.

Eicken, H., and A. R. Mahoney, Sea ice: Hazards, risks and implications for disasters, in Ellis, J., Sherman, D.

(Eds.), Sea and ocean hazards, Elsevier, Oxford, 2014.

Giering, R., and T. Kaminski, Recipes for Adjoint Code Construction, ACM Trans. Math. Software, 24, 437–330

474, 1998.

Haas, C., J. Lobach, S. Hendricks, L. Rabenstein, and A. Pfaffling, Helicopter-borne measurements of sea ice

thickness, using a small and lightweight, digital em system, J. Appl. Geophys., 67, 234–241, 2009.

Hardt, M., and F. Scherbaum, The design of optimum networks for aftershock recordings, Geophys. J. Int., 117,

716–726, 1994.335

Kadygrov, N., S. Maksyutov, N. Eguchi, T. Aoki, T. Nakazawa, T. Yokota, and G. Inoue, Role of simulated gosat

total column co2 observations in surface co2 flux uncertainty reduction, Journal of Geophysical Research:

Atmospheres, 114, n/a–n/a, 2009.

Kalnay, E., and Coauthors, The ncep/ncar 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77, –33, 1996.

Kaminski, T., and P. J. Rayner, Assimilation and network design, in Observing the continental scale Greenhouse340

Gas Balance of Europe, edited by H. Dolman, A. Freibauer, and R. Valentini, Ecological Studies, chap. 3,

Springer-Verlag, New York, 2008.

Kaminski, T., M. Scholze, and S. Houweling, Quantifying the Benefit of A-SCOPE Data for Reducing Uncer-

tainties in Terrestrial Carbon Fluxes in CCDAS, Tellus B, 62, 784–796, 2010.

Kaminski, T., P. J. Rayner, M. Voßbeck, M. Scholze, and E. Koffi, Observing the continental-scale carbon345

balance: assessment of sampling complementarity and redundancy in a terrestrial assimilation system by

means of quantitative network design, Atmospheric Chemistry and Physics, 12, 7867–7879, 2012.
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Table 1. Control Variables. Column 1 lists the quantities in the control vector, column 2 gives the abbreviation

for each quantity, column 3 indicates whether the quantity is an atmospheric boundary (forcing, i.e. f) field,

an initial field (i), or a process parameter (p), column 4 gives the name of each quantity, column 5 indicates

(the standard deviation of) the prior uncertainty and the corresponding units and provides the magnitude of the

parameter value in parenthesis, where applicable, and column 6 identifies the position of the quantity in the

control vector; for initial and boundary values (which are differentiated by region) this position refers to the

first region, the following components of the control vector then cover regions 2 to 9.

index # name type meaning prior unc (value) start

1 taux f wind stress model x-component 0.02 Nm2 1

2 tauy f wind stress model y-component 0.02 Nm2 10

3 2mT f 2-meter air temperature 1.2K 19

4 DewT f dew pointe temperature 1.1K 28

5 cld f cloud cover 0.07 37

6 precip f total precipitation 0.4×10−8 m/s 46

7 scalwnd f scalar wind speed 0.6m/s 55

8 kappam p vertical viscosity coeff. 0.1×10−3 (1.0×10−3)m2/s 64

9 kappah p vertical diffusion coeff. 1.×10−5 (1.×10−5)m2/s 65

10 cdbot p bottom drag coeff. 0.5×10−3 (1.2×10−3) 66

11 tempi i initial ocean temperature 0.5K (vertically decreasing) 67

12 salinityi i initial salinity 0.5 psu (vertically decreasing) 76

13 pstar p ice strength 10000 (15000) Nm 85

14 cstar p ice strength depend. on ice conc. 5. (20.) 86

15 eccen p squared yield curve axis ratio 0.5 (2.) 87

16 gmin p regime plastic-linear viscous 1.×10−9 (5.×10−9) 88

17 h0 p lead closing 1. (0.5)m 89

18 cdwat p ocean drag coeff. 2.×10−3 (5.5×10−3) 90

19 cdwin p atmosphere drag coeff. 1.×10−3 (2.475×10−3)

(absorbed in taux/y)

20 angwat p ice turning angle 5.◦ (25.◦) 92

21 cdsens p sensible heat flux coeff. 0.5×10−3 (1.75×10−3) 93

22 cdlat p latent heat flux coeff. 0.5×10−3 (1.75×10−3) 94

23 albw p open water albedo 0.05 (0.1) 95

24 albi p freezing ice albedo 0.1 (0.7) 96

25 albm p melting ice albedo 0.1 (0.68) 97

26 albsn p freezing snow albedo 0.1 (0.8) 98

27 albsnm p melting snow albedo 0.1 (0.77) 99

28 hi i initial ice thickness 0.5m 100

29 ai i initial ice concentration 0.1 109

30 hsni i initial snow thickness 0.2m 118
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Table 2. Aspects entering the definition of the BSI

Distance from Point Barrow northward to ice edge (10 Aug).

Distance from Point Barrow northward to ice edge (15 Sept).

Distance from Point Barrow northward to boundary of five tenths ice concentration (10 Aug).

Distance from Point Barrow northward to boundary of five tenths ice concentration (15 Sept).

Initial date entire sea route to Prudhoe Bay less than/equal to five tenths ice concentration.

Date that combined ice concentration and thickness dictate end of prudent navigation.

Number of days entire sea route to Prudhoe Bay ice free.

Number of days entire sea route to Prudhoe Bay less than/equal to five tenths ice concentration.
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