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1) Executive Summary

Task  1.1  developed  a  framework  for  a  modelling  system  to  assist  the  design 
quantitative  design  of  the  Arctic  Observing  System.  The  Arctic  Observational 
Network  Design  (AOND)  system  was  developed  around  the  advanced  data 
assimilation system NAOSIMDAS which uses, in its core, a model of the coupled 
Arctic  sea-ice  ocean  system.  The  AOND  system  can  evaluate  candidate 
observational networks in terms of their constraint on target quantities of interest, e.g. 
predicted  ice  area  or  volume  for  a  given  region.  As  a  demonstration  of  its 
functionality, we apply the system to evaluate a hypothetical space mission observing 
ice area. 

2) Introduction

For an offshore platform, information about the ice conditions expected for the next 
few days in its vicinity is crucial. Similarly, for shipping companies, a forecast of the 
ice conditions along, say, the Northern sea route is clearly desirable. If we replace 
'ice conditions' by 'ice thickness', these are just two examples of physical quantities of 
interest,  which  are  not  observable.  In  this  case,  this  is  because  these  target  
quantities refer to a period in the future. In other cases, the target quantity may not 
be  accessible  through  direct  measurements.  For  example,  we  cannot  directly 
measure the ice export through Fram Strait or the mean temperature of the Arctic  
ocean. We can, however, simulate all the above examples of target quantities with a 
numerical model of the Arctic ocean sea-ice system such as NAOSIM (Kauker et al., 
2003). 

A drawback of such model simulations is that they are uncertain for a number of  
reasons. Among these reasons are uncertainties in input quantities to the simulation, 
such as the state at the beginning of the simulation (initial state) and the atmospheric 
boundary condition over the simulation period. Also, there are uncertain constants in  
the formulation of the model equations (process parameters). Observations of the 
ocean sea-ice system have the potential to reduce this uncertainty. Variational Data 
Assimilation  systems  systematically  combine  observational  information  with 
numerical models and prior information on a control vector that is composed by a 
combination of and the above quantities (initial and boundary conditions and process 
parameters).  An  example  is  NAOSIMDAS,  a  variational  assimilation  system 
constructed around NAOSIM, which has been applied to prediction of the Arctic ice 
concentration  on seasonal  time scale  (Kauker  et  al.,  2010).  Another  example,  is 
Arctic version (Heimbach et al., 2010) of the ocean state estimation system of the 
Estimating the Circulation and Climate of the Ocean (ECCO) project.

Date: 12/07/2013
Version: 1 Page 3 of 8



Deliverable report: D1.11 – Report on successful test of quantitative
 network design framework

3) Methodology

Figure  1:  Flow  of  information  through  an  advanced  assimilation/inversion  system (adapted  from 
Scholze et al., 2007). 

Advanced  data  assimilation  systems  are  also  capable  of  inferring  posterior 
uncertainty ranges of the control vector (composed of initial and boundary conditions 
and process parameters) such that they are consistent with the data uncertainty, i.e. 
the  uncertainty  ranges  associated  with  the  observations  (Figure  1).  The  data 
uncertainy  is  the  combination  of  observational  and  model  uncertainty,  the  latter 
reflecting residual imperfections in the model that cannot be resolved by optimising 
the control  vector (Tarantola,  1997).  In a second step these posterior uncertainty 
ranges can then be mapped forward onto uncertainty ranges in a target quantity.  
Doing this uncertainty propagation twice, with and without observations, quantifies 
the added value through the observations in terms of an uncertainty reduction in the 
target quantity. For an example expressing the added value of atmospheric carbon 
dioxide observations for constraining net and gross carbon fluxes simulated by a 
terrestrial biosphere model see Rayner et al., 2005.
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Figure 2: Schematic Presentation of Quantitative Network Design Procedure. Network configuration 
includes samples quantities, sampling times and locations and data uncertainty. 

Quantitative  Network  Design  (QND)  systems exploit  this  capability  of  uncertainty 
propagation.  They are  built  around assimilation  systems (Figure  2)  and calculate 
posterior uncertainty ranges in one or several target quantities that are consistent 
with  data  uncertainties  in  given  observational  networks.  The  methodology  (see 
Kaminski  and  Rayner,  2008)  can  also  be  applied  to  hypothetical  observations, 
provided that (1) they can be simulated with the model and (2) the data uncertainty 
can be estimated. A QND system is, hence, capable of assessing the performance of 
a  set  of  candidate  networks,  as  quantified  by  the  uncertainty  in  a  set  of  target  
quantities.  This  means  we  can  use  a  QND  system  to  construct  network 
configurations  that  meet  the  requirements  of  stakeholders  such  as  shipping 
companies or offshore platforms. The technique is successfully applied in other areas 
of  environmental  science,  e.g.  to  networks  observing  the  global  carbon  cycle: 
Kaminski  et  al.  (2010)  applied QND to evaluate a mission concept  for  observing 
atmospheric  carbon  dioxide  from  space.  An  interactive  QND  system  (publicly 
available  at  http://imecc.ccdas.org)  for  atmospheric  and  terrestrial  observations 
constraining the terrestrial carbon fluxes was set up and applied by Kaminski et al.  
(2012). 

An AOND system was built  around NAOSIM by FastOpt and OASys.  The model 
domain extends from the Arctic to the North Atlantic north of 50 degrees North on a 2 
by 2 degree grid, where the pole is rotated to the equator (Figure 3). It is set up for a  
simulation  period  covering  January  2007  and  uses  a  seven  dimensional  control  
vector  composed  of  scalar  multipliers  for  the  initial  ocean  temperature,  the 
atmospheric  temperature,  and  the  zonal  wind  stress  component  as  well  as  two 
parameters of the ocean component and two of the sea-ice component. As target 
quantities it offers Arctic-wide average values of the ocean kinetic energy, the ocean 
temperature and salinity as well as the total ice volume and area. The QND system 
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allows to  test  networks  composed of  daily  samples of  up to  three data streams. 
These data streams are ice concentration and thickness as well as snow thickness,  
available over the entire model domain. The respective data uncertainties and the 
number of daily samples are flexible. 

Figure 3: Model domain. Southern boundary is 50 degrees North.
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4) Application
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Figure 4: Uncertainty Reduction in % for total ice volume (V) and total ice area (A) averaged over  
January 2007 and model domain for daily samples of ice concentration over every grid cell at every  
day (blue), the first seven days (red) and the first two days in January. 

As an application example of the AOND system, Figure 4 displays an evaluation of 
three  networks  sampling  ice  concentration  with  ice  volume  and  area  as  target 
quantities. All networks sample every grid cell in the entire model domain with a data 
uncertainty of 20%, but they differ in the number of daily samples. The first network 
(blue bars) samples every day in January, while the second (orange bars) samples 
only the first week and the third (yellow bars) only the first two days. The quantity  
displayed  is  uncertainty  reduction  in  the  target  quantities,  relative  to  the  prior 
uncertainty  i.e.  a  case  without  any  observations.  For  example,  an  uncertainty 
reduction value of 0% means the observations do not reduce any uncertainty, while a  
value of 50% means the posterior uncertainty is half of the prior uncertainty. We can 
note at least two points: First, even though we are observing ice concentration, in  
one out of three cases (every day sampling) the uncertainty reduction for ice volume 
is higher than for ice area. This may happen, because any uncertainty reduction in 
the area will, hence, also show up in the volume. On top, the volume is affected by 
uncertainty reduction in the thickness, which, through the dynamics of the model, is 
linked to ice concentration.  Whether the uncertainty  reduction on ice volume can 
actually exceed the effect on ice area depends on the relative contribution of ice 
volume and area on a grid cell level to the totals. If a grid cell exhibits a large ice  
covered area of very thin ice, reducing the uncertainy on the ice area will  have a 
larger contribution on the uncertainty reduction for the total ice area than for the total 
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ice volume. The second point to note is that the shorter the observed period the 
higher  the  posterior  uncertainty.  Revisiting  our  initial  examples,  we  note  that,  
unfortunately, forecasted ice thickness around a platform or a shipping route, is more 
similar to the 1 week or the 2 day case, where (most of) the target quantity extends 
into the future. By contrast, retrospective analyses of the Arctic system use a setup 
similar to the 1 month case. 
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