Forecasting primary production in the Nordic Seas and the Arctic

OPNet-meeting, Geilo, Nov. 6-7, 2008 Annette Samuelsen

Outline

- Forecasting system
- What are the requirements for a primary production forecasting system (discussion)?
 - For the MyOCEAN project we are going to produce forecasts of nutrients, chlorophyll, and phytoplankton biomass.
- Future plans

Forecasting system

- Physical model: TOPAZ-system
 - NERSC version of HYCOM.
 - Ensemble Kalman Filter (EnKF) assimilation of sea-ice and sea surface temperature.
 - The assimilation of ARGO profiles is under development.
- Biogeochemical Model
 - NORWECOM
 - Nutrients: Silicate, Nitrate, Phosphate
 - Phytoplankton: diatoms and flagellates
 - Organic material: detritus and biogenic silica
 - Oxygen

Chlorophyll – example April 2007

Chlorophyll – example April 2007

Percentage model bias

Model requirements

- Obviously we can not require that the model is perfect, but how good should the results before the model should be used operationally?
- The aim of the forecast is to:
 - forecast algae blooms.
 - monitor ecological quality of the water.
 - decide if an area is subject to eutrophication
 - other???
- The quality required of the model should be decided with respect to its use, not with respect to what data are available for validation.

Model requirements

- The requirements should probably be decided before the evaluation of the model is performed.
- Ideally, the quality required should be decided by the users.
- Ideally, the validation dataset should be made with respect to the requirements.
- BUT, what are the requirements?
- Which methods should be used to evaluate the model?

Ecological quality according to the Oslo-Paris convention (OSPAR)

- N:P ratio:
 - normal: 16
 - elevated > 24
- Chlorophyll
 - normal mean: varies between areas.
 - elevated mean: ~ 50% above normal values.
- Oxygen
 - normal: > 6
 - elevated: 4-6
- How good must the model be to determine water quality?

Error quantification

Model bias (Allen, 2007):

```
- > 40% poor- 20%-40% good
```

- 10%-20% very good- < 10% excellent

Cost function (Radach and Moll, 2006)

```
- < 1 very good</p>
```

- 1-2 good

2-3 reasonable

- > 3 poor

 Model efficiency (ratio of the model error to the variability of the data – Allen, 2007)

```
- > 0.65 excellent- 0.65-0.5 very good
```

- 0.5-0.2 good

- < 0.2 poor

N:P ratio

- Normal: 16, elevated 24
- Example: If nitrate has a positive bias of 22% and phosphate has a negative bias of 22% the model will show that the values are elevated even though they are not (false alarm).
- Yet, a bias of between 20 and 40% is regarded as good.
- Without reliable runoff data (with nutrients) from land, trends in the nutrient ratios is not possible to detect.

Chlorophyll

- A value of 50% above the normal mean is considered elevated.
- We have 11 years of satellite monitoring, so the 'normal' value should be well known.
- Although this value is best known in case 1 waters, which is probably less likely to experience eutrophication.
- What maximum error should we require on the chlorophyll results?

Oxygen

- Oxygen, normal: > 6, reduced: 4-6
- The low oxygen values often occur close to the bottom, can we reliably identify areas where the oxygen is reduced?

Future plans

- HYCOM
 - vertical and horizontal resolution
- NORWECOM
 - sensitivity analysis
 - wish list:
 - Improved advection scheme for tracers
 - Bio-optical model?
 - Benthic model?

