

Meteorological Institute

Use of look-up tables (LUT) for aerosol optics and activation to cloud droplets

Alf Kirkevåg

28.11.2013

Aerosol growth by:

- condensation of H₂SO₄
- coagulation of Aitken particles onto larger pre-existing particles
- cloud-processing/wet phase chemistry
- hygroscopic growth

Principle: Scheme for parameterized optical parameters

Seland et al. (2008) Kirkevåg et al. (2008)

Example use of output from look-up tables for SO4(a) mode

Aerosol Specific Extinction, MEC (m²/g) Aerosol Specific Extinction, MEC (m²/g)

Mass specific extinction coefficient:

MEC =
$$\beta_{ext} / C_{tot (without water)}$$

MEC's dependence on 2 of 5 input parameters (pluss λ): total internally mixed mass, and RH

Norwegian Meteorological Institute

Example of lognormal fitting (LUT for r and σ) for use in the activation code

SO4(a)

All look-up tables (LUT) are calculated by use of a separate model code ('mccnpar'), soon to be available on subversion under NorESM Tools!

• Typical time needed for producing new LUT with this code: ~ a few days on a LINUX PC. Not yet ported to and tested on a super-computer.

Examples of code changes which require new LUT (\rightarrow NorESM2):

- New modal size parameters for sea-salt to better fit Mårtensson et al. (2003)
 → modest changes to LUT code and NorESM.
- Include explicit SOA (by condensation/evaporation): test version already made for SOA nixed with the SO4 Aitken mode
 → Larger changes due to complexity of internal mixing + added process
- Include Nitrate aerosols

→ Large changes: added complexity for several particle modes (unless refractive indices and of hygroscopic growth are assumed to be as for sulfate)

Which parts of NorESM need to be modified before using new LUT?

For just small changes (e.g. new size parameters or scavenging efficiencies)

Code for CAM4-Oslo-specific constants constants.F90, aerosoldef.F90

If the LUT have changed format (due to level of complexity) or input-info, then also:

- Code for reading in the new look-up tables opttab.F90, initlogn.F90 initaeropt.F90, initdryp.F90
 for standard model configuration for extra AeroCom diagnostics
- 'Common blocks' and constants const.F90, aerocopt.h, aercopt2.h, aerodry.h, constants.F90, aerosoldef.F90
- Table look-up and interpolation code optinterpol.F90, intlogn.F90, intfrh.F90, intaeropt*.F90, intdrypar*.F90 (where * = 0, 1to3, 4, 5to10)
- Other CAM4-Oslo-specific microphysics (processes) pmxsub.F90, parmix_progncdnc.F90, modalapp.F90, modalapp2d.F90

But: Some changes, e.g. in refractive indices, only requires new LUT.

(This overview is a first attempt: I may have missed some sub-routines...)

Meteorological Institute

Note: NorESM may work (run) without these changes, but it will give wrong aerosol optics and aerosol-cloud interactions.

The life-cycle module can be run without these changes if CAM4 optics and CDNC is used instead (i.e. in offline-simulations).