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Abstract Recent multimodel studies have shown that if one attempts to cancel increasing CO concentrations
by reducing absorbed solar radiation, the hydrological cycle will weaken if global temperature is kept unchanged.
Using a global climate model, we investigate the hydrological cycle response to “cirrus cloud thinning (CCT),”
which is a proposed climate engineering technique that seeks to enhance outgoing longwave radiation.
Investigations of the “fast response” in experiments with fixed sea surface temperatures reveal that CCT causes a
significant enhancement of the latent heat flux and precipitation. This is due to enhanced radiative cooling of
the troposphere, which is opposite to the effect of increased CO, concentrations. By combining CCT with CO,
increase in multidecadal simulations with a slab ocean, we demonstrate a systematic enhancement of the
hydrological cycle due to CCT. This leads to enhanced moisture availability in low-atitude land regions and a
strengthening of the Indian monsoon.

1. Introduction

Due to slow progress in reducing anthropogenic greenhouse gas emissions and growing concem about the
consequences of global warming, increasing attention is being paid to alternative ways of cooling down the dli-
mate [eg., Crutzen, 2006; Schdfer et al.,, 2015]. These so-called “climate engineering” (CE) or “geocengineering”
techniques are often divided into two fundamentally different sets of approaches: greenhouse gas removal
and solar radiation management (SRM). Cirrus cloud thinning is a form of radiation management (RM), which
is different from SRM, because it is the longwave part of the electromagnetic spectrum that is targeted, as
opposed to the shortwave.



GeoMIP: Idealized Climate Engineering
experiments with GCMs

e The GeoMIP G1 , 4xCO,|
experiment
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Kravitz et al. (2011: ASL)



>
-]

Hydrological Sensitivity in G1
experiments with 12 GCMs
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Hydrological Sensitivity in G1
experiments with 12 GCMs
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How does the hydrological cycle
change in a warmer climate?

Naive expectation:
* (1) Water vapor increases accordmg to the

Clausius-Clapeyron equation: 7~ :
de, _ Le, Mo

which corresponds to approximately 7% K

* (2) Precipitation also increases by
approximately 7% K -1



CMIP4 models: 215t century (A1B
scenario)

Water vapor vs Temperature Precipitation vs Temperature
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Precipitation Changes in Global
Climate Models
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How does the hydrological cycle
change in a warmer climate?

Naive expectation:

* (1) Water vapor increases according to the
Clausius-Clapeyron equation:

de, Le, |
dT RT Correct!

which corresponds to approximately 7% K

* (2) Precipitation also increases by
approximately 7% K -1 Wrong!



Why does precipitation not follow a
simple Clausius-Clapeyron relationship?

 Fundamentally, changes in precipitation (or,
equivalently, evaporation) are not controlled
by the availability of water, but the availability
of energy (Allen & Ingram, 2002: Nature)



Energetics of the Hydrological Cycle

 The atmosphere is in Energy Balance, but not
in Radiative Balance

* Radiative Cooling is balanced by Release of
Latent Heat (~80%) + Sensible Heat (~20%)

Qatm =LH +SH + FT%A — FTTOA _ Fi« F

surf surf
‘—v—' | ]\ Y ] | J
Y |
Change in Fluxes of latent Net downwelling Net downwelling
atmospheric  and sensible radiative flux at TOA radiative flux at the
heat content  heat (from (LW + SW) surface (LW + SW)
surface to

atmosphere)



Fast Response, the nature of the
forcing dominates

ALH + ASH AR = AFsg +AR L) AQ,,,

Stable Climate == Q,, ~0

0 s
CO, doubling —p AFTOA,LW <<0, AIzsurf,LW >0

(Less Radiative Cooling of the Atmosphere)

— @+ SH reduced == Less Precipitation



Slow Response, the climate change
dominates

ALH + ASH _ AFT%)A

Warmer Climate ==) AFszrf,Lw >> 0

\!
AI:surf LW > O

>— LH + SH increased

[AFTQA’LW >> 0] ‘

AQ,. >0

=

More
Precipitation



What does this mean for the
Hydrological Cycle?

* Total Response = Fast Response + Slow
Response

$

* Doubling of CO, leads to an increase in
precipitation (due to global warming), but the
increase is smaller than e.g. for a solar forcing
of the same magnitude



So, what if .....

* we design climate engineering - not through
reduced incoming solar radiation, but by

opposing the atmospheric radiative warming
effect of CO,?

 OK; but how would we do that?



Cirrus Cloud Thinning

Conceptual Idea

Storelvmo et al. (2013: GRL)



Comparison between simulations with
detailed microphysics and simple fall
speed changes

Cloud Cover Change Cloud Cover Change
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Cirrus heat the troposphere
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FiG. 5.23  Net heating rate (solar plus ir) profiles in a tropical atmosphere with and without the
presence of a cirrostratus with a base height of 16 km and a thickness of 1.5 km. Four solar zenith
angles are used. pp = 0 represents the nighttime condition. The upper scales are for heating rates
within the cloud.
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Two Sets of Simulations

e Fast Response: 30 yr * Full Climate Response:
NorESM1 simulations 50 yr simulations with a
with fixed-SST mixed-layer ocean, last

30 yrs used for analysis



Simulations with NorESM1-M

e A set of 8 cases were done with fixed SSTs with slab ocean.

O NOUhARWDNRE

Pl control — ref \ \

Cirrus cloud thinning- thin2 Fast Total

Cirrus cloud thinning- thin8 Response Response
Cirrus cloud thickening- thick8

Doubling of [CO,]- 2xCO2

Cirrus cloud thinning*8 and doubling of CO,- thin8+2xCO2
Cirrus cloud thinning*2 and doubling of CO,- thin2+2xCO2
Cirrus cloud thinning*2 and 1.5xCO,- thin2+1.5xCO2.

e Cirrus cloud thinning (thickening) was done by multiplying

(dividing) the ice crystal fall speed by 2 or 8 at
temperatures colder than -38°C.



Fast Response: Radiative Flux
Divergence

a) thin—ref b) thick—ref

Radiative Flux Divergence (Wm™)

Radiative Flux Divergence (Wm™)
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Changes in Latent Heat Flux vs Surface
Temperature
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Measures of water availability

+ P
+ P-E
+ P—PET

P: Precipitation, E: Evapotranspiration,
PET: Potential Evapotranspiration

Problem: In a warmer climate, more
precipitation is needed, so P alone is
insufficient

Problem: Under dry conditions,
E—> 0, soP—E becomes irrelevant

Measures Evaporative Demand of the
Atmosphere. Widely used in Aridity
— Studies




JJAS Changesin P - PET
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Summary

In a 2xCO, climate, the amount of water vapor in the
atmosphere increases according to the Clausius-Clapeyron
equation (~7% K1)

However, for precipitation, the increase is much weaker

This is because increased CO, — by itself — warms the
troposphere, suppressing the flux of latent heat from the
surface

Consequently, Solar Radiation Management inevitably
weakens the hydrological cycle, even though it restores
global temperature

Cirrus Cloud Thinning: Operates in the LW => Avoids the
suppression of hydrological cycle



Thank you!

jegill@geo.uio.no




Increased Aridity in a Warmer
Climate

* Potential
Evapotranspiration (PET): July 2012 Precipitation

the amount Of eva pOration v 2012 July 2012 Potential Evapotranspiration
. F o

that would occur if

sufficient water were

available

© R 225 L b koL

e P—-PET < 0=>Dry Climate

Source: NCDC

* P/PET<0.65: Dry Lands



Temperature Change in CCT+CO,
simulations
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Annual Changes in Precipitation
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JJAS Changes in Precipitation
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Annual Changesin P - PET
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Fast Response

thin8 minus

thick8 minus

2xCO2

thinS+2xCO2

thin2+1.5xCO?2

ref ref minus ref minus ref minus ref
RFDIV +5.69+0.22 | -463+020 | -1.73£0.19 | +391+£020 | +1.50+0.21
(W 111'2)
LH(Wm™) |[+465+024 [-382=026 [-2.03=£025 |+263=028 |+0.92+0.25
Precipitation | +0.161 -0.132 -0.070 +0.091 +0.032
(mm day'l) =0.008 + 0.009 =0.008 +0.009 +0.009
T (K) -0.30 +0.30 +0.27 -0.021 +0.016
+0.051 +0.046 =0.047 +0.046 +0.047
RTOA -34+035 | +35+£025 | +34+£029 |+011+039 |+022+031
(W 111'2)

Kristjgnsson et al. (2015: GRL, in press)




Full Climate Response

thin2 thickS 2xCO2 thin8+2xCO?2 | thin2+1.5xC0O2
minus re¢f | minus ref | minus re¢f | minus ref minus ref
T, (K) -1.96 +3.38 +3.48 +0.17 +0.36
LH(Wm?) |-1.96 +3.28 +5.19 +3.03 +1.69
Precipitation | -0.068 +0.114 +0.180 +0.105 +0.058
(mm day ™)
WYV column | -2.65 +5.45 +4.94 - 0.82 +0.03
(gm™)
NH Seaice | +0.03 -0.14 -0.16 -0.02 -0.02
fraction

Kristjgnsson et al. (2015: GRL, in press)




Hydrological Sensitivity

Can be defined as e
H depends on the nature == ki s ==
of the forcing l GHG&AP
H is larger for solar Fifx;“%ﬁigz w*”’ém ﬁéj
forcing than GHG forcmg« L T : A
me
‘ L el
| ; o4
Balancing GHG by Solar - M i i @iﬂ”
leads to a reduction in P B PP . W IV, ..P%

(a N d E ) Feichter et al. (2004; J. Climate)



Changes in Atmospheric Heating Rates

TABLE 7. ESTIMATED CHANGES IN RADIATIVE FLUXES AND ATMOSPHERIC HEATING RATES
DUE TO CHANGES IN CO,, WATER VAPOUR AND TEMPERATURE (W m™?)

Contribution to changes

Radiative component —

€O, |H,0 (Temperare) All  (GCM)
Net downward Top 2-1 3.7 —-8-8 ~2-4 -2-6
long-wave flux Surface 1.2 5-4 —2-3 4-3 4-2
LW Heating 0-9 —-1:7 63 —6:7 —-6-8
Solar Heating 06 2:0 0-0 2:6 2-6
I Net Heating -0-3 —6-3 —4-2

The changes diagnosed during the model simulation are given in the final column. The
contributions to the long-wave components were estimated by taking the annual mean
profile at each grid point, running the radiation code with the changes applied one at a
time, and globally averaging the results. The contributions to solar heating were estimated
using a globally averaged single-column model.

Mitchell et al. (1987, QJRMS)



