
Climate Change and the 
Hydrological Cycle 

Jón Egill Kristjánsson (UiO) 

Helene Muri (UiO) 

Hauke Schmidt (MPI-M) 

EXPECT 





GeoMIP: Idealized Climate Engineering 
experiments with GCMs 

 

 

• The GeoMIP G1 
experiment  

Kravitz et al.  (2011: ASL) 
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Hydrological Sensitivity in G1 
experiments with 12 GCMs 

Tilmes et al. (2013: JGR) 
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Hydrological Sensitivity in G1 
experiments with 12 GCMs 

Tilmes et al. (2013: JGR) 

A ~5% reduction in P for ΔT=0 
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How does the hydrological cycle 
change in a warmer climate? 

   Naïve expectation:  

• (1) Water vapor increases according to the 
Clausius-Clapeyron equation:  

 

 

   which corresponds to approximately 7% K-1 

• (2) Precipitation also increases by 
approximately 7% K -1  
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CMIP4 models: 21st century (A1B 
scenario) 

Held & Soden (2006; J.Climate) 

Water vapor vs Temperature Precipitation vs Temperature 



CMIP4 models: 20th century (20C3M 
runs) 

Held & Soden (2006; J.Climate) 

2.2% / K 

7.5% / K 



Precipitation Changes in Global 
Climate Models 

Boer (1993; Clim.Dyn.) 



How does the hydrological cycle 
change in a warmer climate? 

   Naïve expectation:  

• (1) Water vapor increases according to the 
Clausius-Clapeyron equation:  

 

 

   which corresponds to approximately 7% K-1 

• (2) Precipitation also increases by 
approximately 7% K -1  
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Why does precipitation not follow a 
simple Clausius-Clapeyron relationship? 

• Fundamentally, changes in precipitation (or, 
equivalently, evaporation) are not controlled 
by the availability of water, but the availability 
of energy (Allen & Ingram, 2002: Nature) 



Energetics of the Hydrological Cycle 

• The atmosphere is in Energy Balance, but not 
in Radiative Balance 

• Radiative Cooling is balanced by Release of 
Latent Heat (~80%) + Sensible Heat (~20%) 

 

Net downwelling 
radiative flux at the 
surface (LW + SW) 

Net downwelling 
radiative flux at TOA 
(LW + SW) 

Change in 
atmospheric 
heat content 
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Fluxes of latent 
and sensible 
heat (from 
surface to 
atmosphere) 



Fast Response, the nature of the 
forcing dominates 

Stable Climate 0atmQ

CO2 doubling 0,  

LWsurfF, 0,  

LWTOAF

LH + SH reduced Less Precipitation 

(Less Radiative Cooling of the Atmosphere) 

atmTOATOAsurfsurf QFFFFSHLH  



Slow Response, the climate change 
dominates 

Warmer Climate , 

atmTOATOAsurfsurf QFFFFSHLH  

0,  

LWsurfF

0,  

LWsurfF

0,  

LWTOAF

0 atmQ

LH + SH increased 

More 
Precipitation 



What does this mean for the 
Hydrological Cycle? 

• Total Response = Fast Response + Slow 
Response 

 

• Doubling of CO2 leads to an increase in 
precipitation (due to global warming), but the 
increase is smaller than e.g. for a solar forcing 
of the same magnitude 

 



So, what if ….. 

• we design climate engineering - not through 
reduced incoming solar radiation, but by 
opposing the atmospheric radiative warming 
effect of CO2? 

 

• OK; but how would we do that? 

 

 



Cirrus Cloud Thinning 

Storelvmo et al. (2013: GRL) 

Conceptual Idea 



Comparison between simulations with 
detailed microphysics and simple fall 

speed changes  

Muri et al. (2014: JGR) 

 Cloud Cover Change  Cloud Cover Change 

Storelvmo et al. (2013: GRL) 



Cirrus heat the troposphere radiatively 

Liou (1992; Ac.Press) 

Dashed: Clear sky 
 
Solid: With cirrus 



Two Sets of Simulations 

• Fast Response: 30 yr 
NorESM1 simulations 
with fixed-SST 

• Full Climate Response: 
50 yr simulations with a 
mixed-layer ocean, last 
30 yrs used for analysis 



Simulations with NorESM1-M 

• A set of 8 cases were done with fixed SSTs with slab ocean. 
 
1. PI control – ref 
2. Cirrus cloud thinning- thin2 
3. Cirrus cloud thinning- thin8 
4. Cirrus cloud thickening- thick8 
5. Doubling of [CO2]- 2xCO2 
6. Cirrus cloud thinning*8 and doubling of CO2- thin8+2xCO2 
7. Cirrus cloud thinning*2 and doubling of CO2- thin2+2xCO2 
8. Cirrus cloud thinning*2 and 1.5xCO2- thin2+1.5xCO2. 
 
• Cirrus cloud thinning (thickening) was done by multiplying 

(dividing) the ice crystal fall speed by 2 or 8 at 
temperatures colder than -38°C. 
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Total 
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Fast Response: Radiative Flux 
Divergence 

Cirrus 
Thinning 
(CCT) 

2xCO2 

Cirrus 
Thickening 

CCT + 2xCO2 

Kristjánsson et al. (2015: GRL, in press) 



Changes in Latent Heat Flux vs Surface 
Temperature 

Kristjánsson et al. (2015: GRL, in press) 



Measures of water availability 

  P: Precipitation, E: Evapotranspiration, 
  PET: Potential Evapotranspiration 
• P  Problem: In a warmer climate, more  

  precipitation is needed, so P alone is  
  insufficient 

• P – E Problem: Under dry conditions,  
  E  0, so P – E becomes irrelevant 
• P – PET Measures Evaporative Demand of the  

  Atmosphere. Widely used in Aridity  
  Studies 

    P / PET  
 



JJAS Changes in P - PET 

thin8 

2xCO2 

thin8 + 2xCO2 thin2 + 1.5xCO2 

thick8 

Kristjánsson et al. (2015: GRL, in press) 



Summary 

• In a 2xCO2 climate, the amount of water vapor in the 
atmosphere increases according to the Clausius-Clapeyron 
equation (~7% K-1) 

• However, for precipitation, the increase is much weaker 
• This is because increased CO2 – by itself – warms the 

troposphere, suppressing the flux of latent heat from the 
surface 

• Consequently, Solar Radiation Management inevitably 
weakens the hydrological cycle, even though it restores 
global temperature 

• Cirrus Cloud Thinning: Operates in the LW => Avoids the 
suppression of hydrological cycle 



Thank you! 

jegill@geo.uio.no 



Increased Aridity in a Warmer 
Climate 

• Potential 
Evapotranspiration (PET): 
the amount of evaporation 
that would occur if 
sufficient water were 
available  

 

• P – PET < 0 => Dry Climate 

 

• P / PET < 0.65: Dry Lands 

 

Source: NCDC 



Temperature Change in CCT+CO2 
simulations 

thin8+2xCO2 thin2+1.5xCO2 

Kristjánsson et al. (2015: GRL, in press) 



Annual Changes in Precipitation 

thin8 + 2xCO2 

2xCO2 

thin8 
thin2 

thick8 

thin2 + 1.5xCO2 

Kristjánsson et al. (2015: GRL, in press) 



JJAS Changes in Precipitation 

thin8 + 2xCO2 
thin2 + 1.5xCO2 

2xCO2 
thick8 

thin8 

Kristjánsson et al. (2015: GRL, in press) 



Annual Changes in P - PET 

thin8 + 2xCO2 thin2 + 1.5xCO2 

thick8 2xCO2 

thin8 thin2 

Kristjánsson et al. (2015: GRL, in press) 



Fast Response 

Kristjánsson et al. (2015: GRL, in press) 



Full Climate Response 

Kristjánsson et al. (2015: GRL, in press) 



Hydrological Sensitivity 

• Can be defined as             
H = ΔP / ΔT 

• H depends on the nature 
of the forcing 

• H is larger for solar 
forcing than GHG forcing  

 

• Balancing GHG by Solar 
leads to a reduction in P 
(and E) 

 

 

 

 

Feichter et al. (2004; J.Climate) 



Changes in Atmospheric Heating Rates 

Mitchell et al. (1987; QJRMS) 
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