

Norwegian Earth System Model (NorESM) preparing for CMIP6

Ingo Bethke (ingo.bethke@bjerknes.uib.no) with contributions from Mats Bentsen, Francois Counillon, Alf Grini, Trond Iversen, Noel Keenlyside, Alf Kirkevåg, Pierre Rampal, Jörg Schwinger, Jerry Tjiputra and others

EVA

HAVFORSKNINGSINSTITUTTET

CCLICS WORKSHOP, TAIPEI 25-27 NOV 2016

Norwegian Earth System Model

Components in blue communicate through a coupling component. Components in red are subroutines of blue components. Variant of CESM with key modifications

- 1. Aerosol life cycle and cloud interaction from Oslo (CAM-OSLO)
- 2. Isopycnic coordinate ocean model (NorESM-O) based on MICOM
- 3. Hamburg Ocean Carbon Cycle biogeochemistry model (HAMOCC) adapted to isopycnic coordinates
- 4. Ensemble Kalman-filter assimilation adapted to isopycnic coordinates

NorESM1-M (Bentsen et al. 2012, Iversen et al. 2012)

- CAM4-Oslo (1.9x2.5, L26)
- NorESM-O (1deg gx1-grid, L53)

CLM4, CICE4, CPL7 as in CCSM4

NorESM1-ME (Tjiputra et al. 2012)

- based on CESM1 and includes HAMOCC
- otherwise same as NorESM1-M

Development history

CAM5-Oslo (in progress)

CAM4-Oslo (Kirkevåg et al. 2013)

CAM3-Oslo (Seland et al. 2008)

CCM3-Oslo (Iversen & Seland 2002, Kirkevåg & Iversen 2002)

ECMWF-offline aerosol (Seland & Iversen 1999)

aerosol-cloud processes development in Oslo

NorESM2 based on CESM2 (in progr.) CMIP6 NorESM1-ME based on CESM1 (Tjiputra et al. 2012) CMIP5

NorESM1-M based on CCSM4 (Bentsen et al. 2012) CMIP5 NorESM2-O/OC (in progress)

NorESM-O (Bentsen 2012)

MICOM/HAMOCC/LPJ coupled to ARPEGE/IFS (BCM-C, Tjiputra 2010)

MICOM coupled to ARPEGE/IFS (Bergen climate model - BCM, Furevik et al. 2003) CMIP3

ocean physics, dynamics and biogeochemistry in Bergen

Norwegian Climate Prediction Model (NorCPM) = NorESM + EnKF assimilation CMIP6 DCPP (Counillon et al. 2015, Wang et al. 2015)

assimilation in Bergen

Why have a Norwegian ESM?

Merits

- stimulates activity and collaboration on national level
- fosters local expertise that is key to inform stake-holders and public
- allows optimisation for regions and processes of national interest
- provides infrastructure for assessing the importance and utility of new process knowledge in regional and global context
- provides infrastructure for integrating new process knowledge
- strengthens international visibility and attracts international scientists
- makes your institute attractive partner in international projects

Challenges

- demanding to maintain a state-of-the-art system
- have to ensure uniqueness of model system to justify its development
- proprietary issues need to be clarified: branding/naming of model, giving appropriate credit to parent model (CESM genology – Knutti et al. 2013)
- should feed developments back into parent model (two-way exchange) but this requires harmonization of source code + enough manpower

Why have a Norwegian ESM?

- over 50 NorESM users and growing
- model used in 39 national projects with total budget of 50 mill USD
- model used in 26 international projects with total budget of 130 mill USD
- CMIP5 output from NorESM1 used in ~500 peer-reviewed publications

What defines NorESM?

CAM-Oslo

What

- schemes for aerosol chemistry, aerosol physics and interaction with clouds that are developed in Oslo
- alternative to modal aerosol module (MAM) in CAM5

Key features

- chemical comp.: dust, sea salt, black carbon, sulphate, organic matter, H2O
- 20 aerosol mixtures + precursors SO2 and DMS = 22 active tracers
- 4 size modes: nucleation, Aitken, accumulation, coarse
- calculates log-normal size distributions with changing median and log-std
- uses tabulated optical properties (e.g. single scattering, asymmetry factor, extinction coefficient) that are pre-calculated for a wide range of input values
- direct and indirect aerosol effects (no indirect effects in standard CAM4)

CAM-Oslo

Kirkevåg et al. 2013, GMD

Introduction

CAM-Oslo

Research focus – aerosol and cloud processes in high-latitude regions

Recent reduction in European SO2 emissions contributed to Arctic amplification of global warming

CAM-Oslo

Research focus – climate sensitivity to anthropogenic aerosol emissions

Effective radiative forcing (present day - pre-industrial aerosol emissions)

ERF (W/m ²) decomposition	CAM4- Oslo	CAM5- Oslo	CAM5 MAM3	CAM5 MAM7	CAM5 MAM7-aging	IPCC AR5	
SW ARI	-0.10	-0.07	$\textbf{-0.02} \pm 0.01$	0.00 ± 0.01	0.08	0.45(0.95 to 0.05)	
LW ARI	—	0.03	_	—	- }	-0.45 (-0.95 10 0.05)	
SWACI	-0.91	-0.97	-1.99	-2.00	-2.01	$0.45(1.20 \pm 0.0)$	
LWACI	0.01	-0.02	0.54	0.46	0.27	-0.43 (-1.20 10 0.0)	
ARI & ACI	-1.00	-1.03	-1.47 ± 0.11	$\textbf{-}1.54\pm0.06$	-1.66	-0.9 (-1.9 to -0.1)	
Reference	Kirkevåg et al. (2013)		Ghan et al. (2012)	Ghan et al. (2012)	Ghan et al. (2012)	Myhre et al. (2013)	

ARI=direct effect ACI=indirect effects

Courtesy: Alf Kirkevåg

Total EFR ~50% higher in CAM-MAM than in CAM-OSLO

CAM-Oslo

NorESM2 CMIP6 developments

- new sea spray emission parametrization (Salter et al. 2015)
- explicit particle formation from biogenic precursors (Makkonen et al. 2014)
- interactive DMS and marine primary organic matter (will show results later)
- interactive aerosol ice nucleation (based on Wang et al. 2014)
- Nitrate aerosols under development for use in AerChemMIP

NorESM ocean component (NorESM-O)

What

- based on the Miami Isopycnic Coordinate Ocean Model (MICOM)
- further developed at the Bjerknes Centre in Bergen
- earlier version used as ocean component of the Bergen Climate Model (BCM)

Key features

- natural representation of motion (overflows, thermohaline circulation, potential vorticity) as water tends to follow surfaces of constant density
- spurious diapycnal mixing is minimized -> (nearly) closed energy budget
- accurate conservation and transformation of water mass and tracer properties

Research focus

- water mass transformation and exchanges in the North Atlantic and Arctic
- climate variability and trends on decadal-to-centennial time scales
- ocean heat uptake and vertical redistribution -> climate sensitivity & sea level
- ice sheet ocean interactions

NorESM ocean component (NorESM-O) – dynamical core

- **Mass conserving** formulation (non-Boussinesq).
- **Leap-frog** and forward-backward time-stepping for the baroclinic and barotropic mode, respectively.
- Arakawa C-grid horizontal discretization.
- Momentum equations formulated in vector invariant form and solved with a potential vorticity/enstrophy conserving scheme (Sadourny, 1975).
- Layer thickness and tracer **advection by incremental remapping** (Dukowicz and Baumgardner, 2000).
- Accurate vertical integration of the in situ density in the evaluation of the pressure gradient force.
 - computationally efficient
 - good conservation of properties
 - leap-frog replaced in future

NorESM ocean component (NorESM-O) – physics

Surface bulk mixed layer

- The depth (detrainment/entrainment) is estimated with a Kraus-Turner type turbulent kinetic energy TKE model (Oberhuber, 1993).
- Extended with a parameterization of restratification by submesoscale eddies (Fox-Kemper et al., 2008).

Eddy mixing

- The parameterization of thickness (Gent and McWilliams (GM), 1990) and isopycnal eddy diffusivities follows the diagnostic version of the eddy closure of Eden and Greatbatch (2008).
- The eddy diffusivities are reduced when the grid resolves the first baroclinic Rossby radius.

Diapycnal mixing

- Background diffusivity is vertically constant but with a latitude dependence following Gregg et al. (2003).
- Shear driven mixing follows Large et al. (1994) but with increased maximum allowable mixing near the ocean bottom to provide sufficient mixing downstream of overflows.
- Mixing driven by energy extracted from the mean flow by bottom drag.
- Tidally driven mixing according to Simmons et al. (2004).

NorESM ocean component (NorESM-O)

Problem

- positive bias in subtropical surface salinities (mirrored by negative bias at intermediate levels)
- ➢ increased salt advection to subpolar North Atlantic
- ➢ increased dense water formation leading to intensification of AMOC

Solution – revised implementation of GM eddy mixing

- old formulation: layer interface smoothing, only active below mixed layer
- new formulation: true Gent-McWilliams implementation, extending to surface

NorESM2 plans for CMIP6

NorESM ocean component (NorESM-O)

- indications of reduced SST biases in ¼° configuration
- SST fronts sharper in 1/4°; important for 1° atmospheric response?
- more realistic exchange between North Atlantic and subpolar seas

HAMburg Ocean Carbon Cycle model (HAMOCC)

What

biogeochemistry module coupled to physical ocean component of NorESM

Key features

- formulation in isopycnic coordinate framework unique
- advanced representation of sediment interactions

Research focus

- uncertainties in future ocean carbon uptake
- compatible GHG emission for atmospheric CO2 trajectories (Jones et al. 2013, J. Clim.)
- biogeochemical atmosphere–ocean interactions (DMS and N2O emissions, iron flux with dust)
- constraining ocean ventilation/mixing with help of biogeochemical tracers

HAMburg Ocean Carbon Cycle model (HAMOCC)

HAMburg Ocean Carbon Cycle model (HAMOCC)

Marine DMS included in HAMOCC with PH dependency

Up to 0.5 W global SW cloud forcing using RCP8.5 scenario

Ensemble Kalman filter assimilation in isopycnic coordinates

Ensemble Kalman filter assimilation in isopycnic coordinates

Courtesy: Francois Counillon

Preparing for CMIP6

NorESM1 vs NorESM2

		NorESM1 (CMIP5)	NorESM2 (CMIP6)	
CESM version		CCSM4/CESM1	CESM2	
ATMOSPHERE	CAM version	CAM4	CAM5.5	
	Deep convection	Zhang-McFarlane (1995)	Zhang-McFarlane (1995)	
	Shallow convection	Hack (1994)	CLUBB?	
	PBL	Bretherton and Park (2009)	CLUBB?	
	Microphysics	Rasch and Kristjánsson (1998)	Gettelman and Morrison (MG2; 2015)	
	Aerosols	CAM4-Oslo	CAM5-Oslo	
LAND	CLM version	CLM4	CLM5	
	River routing	RTM	MOSART	
OCEAN		NorESM1-O	NorESM2-O	
SEA ICE		CICE4	CICE5	

we try to stay close to CESM2 to 1) help attribution of climate differences and 2) facilitate future upgrades

NorESM2 resolutions and CMIP6 contributions

	NorESM2-	НН	МН	MM	LM	
UTION	Atmos. – Land	H: 0.23°x0.31°	M: 0.9°x1.25°	M: 0.9°x1.25°	L: 1.9°x2.5°	
RESOL	Ocean - Sea- Ice	H: 0.25°	H: 0.25°	M: 1°	M: 1°	
SSES	Atmos. Chem.	Simplified	Simplified	Simplified	Simplified + full	
PROCE	Ocean BGC.	TBD	TBD	ON	ON	
CMIP-DECK + CMIP6 Hist		(from MH)	ALL	ALL	ALL	
	MIPs	HighResMIP	AerChemMIP CFMIP, RFMIP DAMIP, OMIP ScenarioMIP	AerChemMIP CFMIP, RFMIP DAMIP, OMIP ScenarioMIP	AerChemMIP CFMIP, DAMIP DCPP, LS3MIP LUMIP, OMIP PMIP, RFMIP ScenarioMIP VolMIP	
	Comment	experimental ver., depends on EU PRACE resources	flagship, cutting edge version	fallback version if MH not realisable	affordable version for ensemble and long runs	

CAN WE DO IT?

CMIP6 simulation plan – two scenarios

High (stretch goal) scenario

- use medium-high resolution configuration (MH: 1° atm, 1/4° ocn), including ocean biogeochemistry
- complete MH and ML production by end of 2017 and HH by fall 2018

Low (minimum) scenario

- use medium-medium resolution (MM: 1° atm, 1° ocn) instead of MH
- use 1° and 1/4° ocn for OMIP but without ocean biogeochemistry
- no high-high (HH) configuration
- otherwise same as high scenario

CMIP6 simulation plan – information gathered in xml-sheets

MIP	Years	Model	Components	Machine	Start	End
Devel+tuning	3000	LM	ALOI	Hexagon	01.07.2016	01.10.2016
Devel+tuning	500	LM	01	Hexagon	01.07.2016	01.01.2017
Spinup	800	LM	ALOI	Hexagon	01.10.2016	01.01.2017
DECK+historical	1001	LM	ALOI	A1	01.01.2017	01.04.2017
AerChemMIP	505	LM	AL	Hexagon	01.01.2017	01.04.2017
AerChemMIP	1071	LM	ALOI	Hexagon	01.01.2017	01.04.2017
C4MIP	225	LM	ALOI	Hexagon	01.01.2017	01.04.2017
CFMIP	174	LM	AL	Hexagon	01.01.2017	01.04.2017
DAMIP	1881	LM	AL	Hexagon	01.01.2017	01.04.2017
LS3MIP	165	LM	L	Vilje	01.04.2017	01.10.2017
LS3MIP	242	LM	ALOI	Vilje	01.04.2017	01.10.2017
LUMIP	165	LM	L	Vilje	01.04.2017	01.10.2017
LUMIP	520	LM	ALOI	Vilje	01.04.2017	01.10.2017
OMIP	310	LM	01	Hexagon	01.01.2017	01.04.2017
PDRMIP	100	LM	ALOI	Vilje	01.04.2017	01.10.2017
RFMIP	180	LM	AL	Vilje	01.04.2017	01.10.2017
RFMIP	513	LM	ALOI	Vilje	01.04.2017	01.10.2017
ScenarioMIP	344	LM	ALOI	Vilje	01.04.2017	01.10.2017

CMIP6 simulation plan – plotted simulation time-line for ML

CMIP6 simulation plan – monthly cpu usage

Plans beyond CMIP6 (NorESM3)

Atmosphere

- increased vertical resolution in stratosphere
- coupled (atmosphere-land-ice-ocean) assimilation

Ocean

- increased frequency of surface coupling
- increased vertical resolution in mixed layer
- replace virtual salt flux with mass fw flux
- representation of ice shelf-ocean interactions

Courtesy: Pierre Rampal

Lagrangian sea ice model (neXtSIM developed in Bergen)

- elastic-viscous-plast (EVP) rheology replaced by elasto brittle (EB) rheology
- ice mobility increased for thin ice (not captured by CMIP5 models)
- ice flow wave interaction