	QC2 Prototype Report and Design Justification
	Date; 20080623 Version: 1.1

QC2 Prototype Report and Design Justification
met.no klimadivisjonen
TABLE OF CONTENTS

11
Introduction

22
Qc2 System Design Justification

22.1
Overview

42.2
Communication with Qc1

62.3
Qc2 Prototype Design

92.4
Algorithm Specification

112.5
Future Algorithms

122.6
Model Output

132.7
Configuration file

162.8
QC2 Flagging

162.9
Logging decisions

172.10
Interaction of Qc2 and HQC

183
Example Implementation [RARR_24]

183.1
Redistribution of accumulated values algorithm

193.2
Algorithm Testing

213.3
Rounding Errors

223.4
Flag Settings

273.5
Scheduling

283.6
Missing Row Case

294
Conclusion

1 Introduction
Automatic quality control methods applied in non-real time [Qc2] provide an additional layer of quality control on observational data in the kvalobs database. The kvalobs Qc2 system takes advantage of information from the whole station network and/or extended time series of data in order to improve the quality control and corrections applied to each individual observation.
[image: image1.png]

Qc2 will become part of the overall data processing chain at met.no and the impact on the existing systems and processes has to be taken into account, including:

1. Interaction with QC1 and the downstream services utilising kvalobs data

2. Co-ordination of Qc2 and HQC activities

3. Specification of the flagging system to handle Qc2 controlled observations
For the initial design of the Qc2 system there were no well-defined requirements and the gathering of requirements proved a slow process without an example system available. To solve this a specific Qc2 algorithm was defined and used to build a prototype. The prototype implements the specific algorithm and includes a framework within which other algorithms can be easily incorporated. This report documents the prototype software and identifies open issues in the Qc2 system design. Furthermore, it must be stressed that the prototype framework is not the de facto final design. It is a necessary step in the analysis and understanding of the Qc2 problem and provides a means by which to gather system requirements.
This report is divided into two parts. In the first part the general characteristics of the Qc2 system and possible designs are discussed: overall Qc2 concepts, interaction and communication with Qc1, user control of the system, system logging and templates for the specification of algorithms. In the second part the specific implementation of an algorithm for the redistribution of accumulated 24 hour precipitation [algorithm abbreviated as: RARR_24] is described, including an analysis of test results and the first specification and analysis of flag values.
The conclusion summarises the set of open issues which need to be investigated for rapid progress in the next project phases.
2 Qc2 System Design Justification

2.1 Overview
Qc2 is applied to data which has already been controlled at the Qc1 level. The block diagram below illustrates the general strategy of the Qc2 system to apply a set of controls and functions, very possibly with iteration, and generate Qc2 controlled observations. The Qc2 controls establish confidence in data quality based on statistics of an ensemble of acquired data (e.g. spatially distributed datasets and/or long time series). Utilisation of the new quality information and the ensembles of acquired data will allow subsequent QC2 functions to derive improved corrections to the observed values.

[image: image2]
Expanding on the terminology above, a “control” will not change the data but only assign metadata to each observation describing the checks which have been made on the observation and the associated confidence in the quality. In the kvalobs database this metadata is captured in the controlinfo and useinfo flags and the cfailed contents.
The Qc2 quality controls will take advantage of statistics acquired from many data points. Where there is missing data or very uncertain data, the ensemble information utilised in the quality control may also be used to provide a corrected value for the kvalobs database (and the downstream services which make use of the corrected values). These corrections are carried out by Qc2 functions. A “function” will describe an algorithm that may change the corrected value of an observation or generate model data, associated with the effect of the function, controlinfo and userinfo flags and cfailed may be modified.
It is conceived that any particular control or function can be run in isolation. Controls and functions can be combined to produce effective algorithms to solve particular problems. Different versions of the same algorithm may exists depending on the particular set of components used in the data processing, e.g. the RARR_24 algorithm may have different versions depending on the type of outlier detector control and interpolation adopted. Such a scenario is not realised by the current prototype but it is a planned and desirable approach to incorporate in the final design.
2.2 Communication with Qc1

The Qc1 controls are triggered when new data enters the kvalobs database. The overall kvalobs system is captured in the following schematic [from http://kvalobs documentation]

[image: image3]
Data is received by kvalobs via the daemon kvDataInputd. kvDataInputd decodes the data and loads the database. A signal is sent to kvManagerd indicating that new data is available. KvManagerd passes this information to kvQabased that runs all the scheduled checks and updates the data in the kvalobs db as necessary. When kvQabased is finished a set of signals corresponding to the processed data is sent to kvManagerd, which in turn notifies the kvServiced that a new message has passed through QC1 quality control checks and database updates are available. KvServiced sends notification that data is available to all processes that have registered with the service daemon.
The Qc1 controls are designed to operate on data immediately when it is introduced.

Qc2 checks require a set of data, e.g. extended time series, or a set of stations from the whole network for a given time. Two ways to achieve this are:

1. Periodic runs of the checks at times when it is expected that enough data is available with the checks always being rerun at a later time to improve the results based on the additional data that has been received since the last run,
2. An active process that analyses the data contents of the kvalobs database and sets a check running when the availability requirements for target data are met.
Dependent Qc2 checks are performed after the corresponding Qc1 checks, other than this, the Qc2 operation is decoupled from Qc1. However, when Qc2 updates a value in the kvalobs database all interested processes need also to be informed. In the prototype this is achieved by sending a message directly to the kvServiced that new data is available. This is option [A] in the diagram below. Qc2 mimics the action of kvQabased informing kvManagerd that it has finished with a work item leading to kvManagerd notifying kvServiced (i.e. the green and orange dashed arrows correspond to equivalent effects).

[image: image4]
Alternatives include:
[B] Qc2 informs kvManagerd that data has been updated. kvManagerd can then ‘manage’ how this information is propagated to the other services.
[C] A separate notification service is constructed to inform processes interested in Qc2 activities.

Option [A] is the simplest solution and requires no reworking of the existing kvalobs Qc1 code. Drawbacks are that kvServiced does not know if the update is coming from Qc1 or Qc2 [some reworking could fix this]. An open issue is whether kvServiced and its registered users can handle the extra information. This would need to be tested, any problems could be most easily solved directly in kvServciced. [B] ties the Qc2 checks more closely with Qc1, changes to the kvManagerd and kvServiced would be necessary.

2.3 Qc2 Prototype Design

Control of the prototype is driven by configuration files in a kvalobs system directory:

1. The Qc2 system scans the contents of the configuration file directory periodically,
2. If an active configuration file is found, the Qc2 system parses the configuration file to identify the algorithm to invoke and the data required,
3. The Qc2 system reads the data from the database, processes are carried out by the algorithm and the Qc2 system writes the results back to the database,
4. Qc2 informs the kvalobs service daemon that new data is available.
When the task described by the active configuration file is completed the Qc2 system returns to scanning the configuration file directory. The system currently detects whether a file is active by reading the execution time from the configuration file. This rudimentary setup is illustrated in the sequence diagram below.
[image: image5.png]kvServiced

DatabaseInterface

Configuration Data

g ¢ 5
2 i £
g ¥ g

To create the prototype system the existing kvalobs Qc1 daemons were investigated, and the components suitable for inclusion in Qc2 were extracted. The intention was to reuse the base kvalobs libraries and other well-established met.no libraries. It was found that the kvalobs libraries needed to be extended to support the many station queries which are necessary for Qc2 (these are simple extensions to kvQueries – no impact on exisiting software).
Reverse engineering of the Qc2 prototype gives the following overall class diagram. It is a little haphazard owing to the alchemical design process relying on extraction of Qc1 components and then combining this with a solution for the [RARR_24] example. The pale blue shaded classes [ConnectionHandler, Qc2App, Qc2Connection] are adapted from kvalobs Qc1 kvQabased with all the unnecessary parts removed. The pink clases [CheckedDataHelper, CheckedDataCommandBase] are taken from kvManagerd and handle the communication with kvServiced. The yellow classes [ProcessImpl, ReadProgramOptions, Qc2D and kvQc2dst] implement the Qc2 configuration file handling and algorithm execution. The StopWatch class is just used for measuring CPU usage in performance analysis.
[image: image6.png]fiters

Corrmeontarda [T ozCormeston Sopuin
o Fotinat o
idleTime. dbhgr dbGate |stopwateh(.
max idle time dbConnect |connection___{ [~stopwateho
pocldetme A |aoner 2Camediro)
<Connectonandiao| |#Drvers s
oetconnactiong L fnutdoun etconnectiond | [rocezimpr
Lo [— e
etkiSenicebataResd| sy Frocesimrl
mutec — (N ooz
wop (22000 lsetecto ETH
o Reaiibutso hsime
Crecledbdateloar] 7-02nan0 [Varabi, orinal_
oon isOk) 3 arami
sentoenie_ cenibataTokssenised [K2P° o e
Chedkedbataepe)| [1ooipKeseniond =
cenioahineo aoshutdomno T I Y R
Connestond enutdomno oap ot O] anso. e iny
connection)) getNewDbConnection) Qc2Wot)) uT1 corrected. dst_newd
fantosttosonis | |domeoncammasiond | [spamortof |stre Erar| (sus
B it ioime
: e s P
<etidpars e e
; e . edi Chpeia
typedef? e It d_controlinfo
CheckadbatsCommandese i e iz
Chededbsutonmandased (L e i,
el N ressremmopr | [By
eeromucemmndos || beaslt o) s | (i
<ChedtedbstacammandBase0 BN (e oR] (T
helper) itotimeq RedistiibuteStationDatag)
heipes ipeic asar_ato
sansot)
eveld
fcoractedo
iconrolnio0
fusinio0
feiens
[
i)
0
on0
o
tationioo
2200
<aczbo
eano
opersor <0
(oo ntas0
dcibuto)
cteuate i)
e e

ProcessImpl selects the individual Qc2 algorithms to execute based on the contents of the configuration file. It is clear from this initial prototyping phase that the encapsulation of each algorithm will be improved, e.g. for example a strategy design pattern can be applied (see next figure). In the current RARR_24 algorithm there are a number of control and function steps linked together, a better separation of these components will allow better reuse of the code in the future. It should be possible to configure and/or plug in new algorithms as needed.
[image: image7.png]Conmechionfandier [GozEommestion

= inGue Connection_ok

ateTime. e e

ma e time bconnect cannection,

ConnectionRandizg | |¢biiver Gezconnection)|

<ConnectionHandiero| |deDiiverla vk

etConnectiong jhutdoun_ getconnectiong
P ornizDown

netsedado

atsenioeChedkadinput
ks amiceDataReady

GoProcess
mutes
wop [C2ARP0
224550
Checledbaiatiloar] | aotidy
00
senvicasive_ lendbataTokvSeniced
Checieddatamsnen| [oquprsanios) ReadProgrambptions
seniceaiie oShutdouno o
connectiond shutdowno) s
connectong aethewbbConnection Beo
sendoataTosenicad| |fteasebbConnectiong B
T |algaCode Gealsts
Lozt ootz
Runsivinute Readd
Fo RunatHour | Sa— Y
pes a MkeD2Databject)
sCommandBase i
T IO e BuitinContio
ChededbatatommandBzsed newrie
[Pt B | W ReadProgranGpiions)
cperstor iy ~ReadprogramOptionso|
Checkadbstacommandgassg [~V =
I~ChedkedbataCommandBaze0 selecttontisFilex) AgerthmA | [Agoriie) [Agorimt
helpery
nATgorihmAD | [RumAloe D | [FumAlgertmEd
hetpern RunAigorithma0 | [FunAlgertmen o

Example evolution of the prototype to more robust and extensible designs.

The Qc2Data object is a custom container for handling data subject to Qc2 algorithms. It is designed to hold data from the whole network and include the geographic co-ordinates and altitude of each point. The geo-statistical algorithms which make up Qc2 space controls require this information to be managed together.
Assessment of the component inherited from Qc1 is also under consideration. Shall we reuse as much as possible or replace some parts with new libraries, e.g. for generic functions such as database access?
All ideas and suggestions on the code design are greatly appreciated. Make suggestions now … they stand a good chance of being implemented.

2.4 Algorithm Specification
An important part of building a complete Qc2 system is the specification of the controls, functions and full algorithms. The prototyping of the RARR_24 example illustrated the set of information which is required to enable successful algorithm implementation. There are advantages if the specification is standardised to provide clear information to the implementer, a process by which to review proposed algorithms and help maintain end-to-end documentation. To facilitate this process the following page suggests a template for the standard specification of an algorithm, and thereafter a specification is completed for RARR_24.
ALGORITHM SPECIFICATION TEMPLATE
	Description of method

	

	Quality control level

	dd

	Run Parameters

	

	Characteristics of data to which method is applied:

	Controlinfo and/or useinfo:

	Typeid, Paramids, other metadata:

	Specification of controlflags to be set for expected results of the algorithm, i.e. consider both positive and negative results.

	

	Expectations of the useinfo flags corresponding to controlinfo flag settings.

	

	Dependencies

	

	

	VISA LOOP

	
APPROVED

DATE

	
COMPLETED

DATE

REDISTRIBUTION OF ACCUMULATED VALUES [RARR_24]
	Description of method

	
RR_24 is the precipitation collected over the last 24 hours. The Qc1 check precipcollected_flag identifies if an RR_24 value is valid (fd=1), erroneous (fd=3) or is the accumulation (fd=2) of a number (N) of consecutive 24 hour periods, where N>1. For the case fd=2, the accumulated value shall be distributed over the N 24 hours periods. For each day the calculated

RR_24= model_value*observed_accumulation/sumof_model_values

where the model values for the N missing values of RR_24 are calculated by an interpolation from the other stations making measurements at the same time and for which fd=1. The initial interpolation method is an inverse 2-D distance weighting. (The method of interpolation applied shall eventually be pluggable and include 3-D options.)

The calculated RR_24 updates the corrected value in the kvalobs database.

	Quality control level

	
Non-real time (Qc2).

	Run Parameters

	
It shall be possible to run the algorithm for

· a fixed time range or

· an arbitrary interval from a past date up to the current time

The typeid to which the algorithm is applied

	Characteristics of data to which method is applied:

	Controlinfo and/or useinfo:

Interpolation utilises data for which fd=1 [c(12)=1] and the corrections are applied to fd=2 and fhqc=0
[i.e. c(15)=0, indicated that no HQC is applied to the observation.]

	Typeid, Paramids, other metadata:

Paramid=110

	Specification of controlflags to be set for expected results of the algorithm, i.e. consider both positive and negative results.

	
controlinfo fd=8, fstat=3

	Expectations of the useinfo flags corresponding to controlinfo flag settings.

	
unknown

	Dependencies

	
Precipcollected_flag.pl

Additional Qc2 space controls

· to determine the level of variability in the data volume

· selection of data in a wet or dry volume

These methods will have an impact on the selection of points used in the interpolation to generate
model values and can lead to additional quality control flag settings.

	

2.5 Future Algorithms

The following are possible algorithms which are targets for the Qc2 system, taken from discussions with colleagues and presentations at met.no.
	
	Description

	Controls
	

	Station Selection
	It is important to select the best stations for the interpolation at any given point. There are a number of different strategies for this depending on the application:

wet or dry area, terrain orientation and wind field, fixed station list, blacklisting, triangulation …

	Assessment of Variability
	Algorithms to detect the uniformity of data in the area of interest, statistical checks, comparison with monthly means …

	Outlier Detection
	Identify outliers by statistical means (so that they are not used in later interpolations)

	Extreme Detection
	e.g. identification of isolated convective cells, were the outliers real data?

	Dip test
	Find extremes in timeseries

	Weather analysis
	Controlling that the observation values fit with the weather analysis

	Statistical check
	Detecting systematic errors in a meteorological parameter as early as possible

	Climatological Check
	Ensuring that climatological elements and local peculiarities are considered (temperature inversions, topographical features, weather type and importance of circulation type for explaining variation of a parameter value, etc.)

	…
	…

	Functions
	

	Adjustment of time series
	Correct extremes in time series (corollary to the dip test),
Provide corrections for data gaps from neighbour interpolations

Akima interpolations

…

	Distribution of accumulated values
	RARR_24 !

	Interpolations
	Simple, spline, kriging … for many applications.

2-D, 3-D, 4-D methods

Height adjustment. Triangulation.

	TA, TAN, TAX Substitutions
	A missing TA value at time T1 can be inferred from the TAN and TAX in the next row of the db (i.e. at T2), since the TAN and TAX at T2 correspond to the interval of the missing TA (centered at T1).

	…
	…

2.6 Model Output
The geo-statistical algorithms applied in Qc2 spatial controls generate a large quantity of model output. For example, for every measurement under consideration an interpolated value can be calculated from the set of nearest neighbours. The model data can be generated on the fly in a specific algorithm, but it also may be useful for use in other tests and will need to be compared to the results of other interpolation algorithms, as part of the cycle of continuous improvement.
The model data can be held in a new table in the kvalobsdb, but this approach has the problems:
· large table added to kvalobs db, impacts operational system,

· table is derived from the original data and contains mainly redundant information,

· maybe subject to change when applying different algorithms, difficult to track history

Alternatives are:
· store GIS data / (QC2 derived data) in a separate database

· archive in a scientific file format, e.g. netCDF, HDF 5, specific GIS format.

The prototype appends model data generated during a Qc2 run in a netCDF file (the class Qc2D includes a built in method).
It is expected that this solution will be maintained. Operationally, requirements can be formulated about the directory structure where this data should be kept, limitations in the size of files and specific interface requirements about re-use of this data.

2.7 Configuration file

The prototype software utilises Boost.Program_Options as the user control for setting the parameters and checks to be run. All options are held in external configuration files. The configuration files are stored in $KVALOBS/Qc2Config and must have the suffix “.cfg” appended to the name.
The prototype is set up in a simple and rudimentary way. The contents of the configuration file directory are scanned every minute. Information about when an algorithm is to be run is held in the configuration files, if the current time matches this time the prototype will execute the algorithm pointed to by the configuration file. The prototype will not check for additional algorithms to be run until the current task is finished.
The above is the set up of the prototype and the required behaviour for Qc2 is TBD. Options include:
· Maintaining the type of policy as illustrated by the prototype

· Building a queuing system inside the Qc2 Engine

· Enabling threads to perform different algorithms simultaneously

· Running separate instances of the Qc2 software, each one responsible for a different set of algorithms

An example configuration file is provided below, which applies Algorithm #1 each day at 20:30 UT to a fixed interval of data 2007-5-31 06:00:00 to 2007-12-31 06:00:0, to 24 hour precipitation data (paramid=110) for typeid=302. The algorithm will step through the database 1 day at a time.
AlgoCode=1

RunAtHour=20
RunAtMinute=30
#[Time Range]

Start_YYYY=2007

Start_MM=5

Start_DD=31

Start_hh=6

Start_mm=0

Start_ss=0

End_YYYY=2007

End_MM=12

End_DD=31

End_hh=6

End_mm=0

End_ss=0

#[Time Step]

Step_DD=1

#[Specific Data Type and Paramters ids etc.]

ParamId=110

TypeId=302

The above example was applied to test the accuracy of the redistribution of accumulated values technique over a long dataset. For daily operational runs a configuration file might look like this:
AlgoCode=1

RunAtHour=9

RunAtMinute=9

Last_NDays=10

Start_hh=06
#[Time Step]

Step_DD=1

#[Specific Data Type and Paramters ids etc.]

ParamId=110

TypeId=302

Which runs the algorithm over the last N days data in the archive (N=10 days in this case).

The advantage of Boost.Program_Options is that it is little effort to add whatever configuration parameters are required. Part of the final Qc2 specification is to determine the basic set of configuration parameters, with the knowledge that in the future additional parameters can be added necessary for specific algorithms as realised.
To begin this process here is a table of planned configuration parameters to be made avaiulable. Only the parameters required by an algorithm need to be specified in the configuration file. There shall be one configuration file per algorithm. Boost.Program_Options allows default values to be specified for each parameter in the software.
	Parameter
	Comment/Description

	
	

	StartTime
	The Start and End times specify the range in which an algorithm will run. The actual coding of the algorithm will determine if a StepTime is also required

	Start_YYYY
	

	Start_MM
	

	Start_DD
	

	Start_hh
	

	Start_mm
	

	Start_ss
	

	EndTime
	

	End_YYYY
	

	End_MM
	

	End_DD
	

	End_hh
	

	End_mm
	

	End_ss
	

	Parameter
	Comment/Description

	
	

	StepTime
	These parameters will determine if the algorithm is parsing hourly data, daily data or any other regular interval. There are discontinuities in some time series due to hour shifts associated with summer time switches. These can be handled if required.

Note: including a specific start time cause steps to start from that offset.

	Step_YYYY
	

	Step_MM
	

	Step_DD
	

	Step_hh
	

	Step_mm
	

	Step_ss
	

	Parameter
	Comment/Description

	
	

	LastTime
	These time setting will determine from when an algorithm should start … up to the current time.

	Last_YYYY
	

	Last_MM
	

	Last_DD
	

	Last_hh
	

	Last_mm
	

	Last_ss
	

	Parameter
	Comment/Description

	TimeRangeN
	There are likely to be some very standard intervals to run (e.g. every hour for the last 24 hours), rather than coding this in the configuration file using the other time settings a shorthand option can be defined.

	Parameter
	Comment/Description

	
	

	AlgoCode
	Algorithm Code

	Paramid
	Kvalobs db parameter

	Typeid
	Kvalobs db parameter

	StationId(s)
	Note many checks will exploit all available stations automatically.

	
	

	
	

	ControlFlagsToSetIfTrue
	

	
	

	ControlFlagsToSetIfFalse
	

	
	

	ControlFlagsToTrigger
	

etc.
2.8 QC2 Flagging

QC2 controls will be responsible for setting appropriate controlinfo settings. The specification of controlinfo settings for RARR_24 are discussed in Section 3.
The kvalobs library has a built in function which sets useinfo based on controlinfo settings.

 bool setUseFlags(const kvControlInfo& cinfo);

The setUseFlags already anticipates the setting of user flags in response to QC2 controls. However, most of the logic is commented out in the operational code, indicated in blue below:
bool kvControlInfo::qc2dDone() const

{

 return false;//flag(f_fs) or flag(f_ftime) or flag(f_fw) or flag(f_fstat);
}

bool kvControlInfo::qc2mDone() const

{

 return false;//flag(f_fclim) or flag(f_fd);
}

 ui[2]= 9;

 //if (cinfo.qc1Done() or cinfo.qc2Done() or cinfo.hqcDone())

ui[3] = 9;

 //if (cinfo.qc1Done() or cinfo.qc2Done() or cinfo.hqcDone())

ui[4] = 9;

 // NB: After useinfo[2]

 //if (cinfo.qc1Done() or cinfo.qc2Done() or cinfo.hqcDone())

These have all been activated in the version of the kvalobs library code employed by the Qc2 prototype.

Implications:

· Need for regression testing when change in kvalobs base libraries is propagated to QC1

· Further need to investigate/test effect on reduced set of use info flags in the downstream data warehouses.
2.9 Logging decisions

Kvalobs QC1 currently logs to $KVALOBS/var/log with syslog type log files in the top directory, e.g. kvQabased.log, kvQabased.log.1 etc. and a hierarchy of html log files for each algorithm organised in terms of stationed and timestamps, e.g.:

./html/44080/2008-06-13/log-09-00-00.html

./html/44080/2008-06-13

./html/44080

./html/44300/2008-06-16/log-14-00-00.html

./html/44300/2008-06-16/log-08-00-00.html

./html/44300/2008-06-16/log-10-00-00.html

etc.

The prototype currently writes to a syslog type file in $KVALOBS/var/log.

Qc2 algorithms encompass many stations at a time so a station based directory structure is not applicable. A possible organisation is:

./html/”AlgorithmName”/2008-06-13/log-09-00-00.html
--- include station id if appropriate

./html/”AlgorithmName”/”Station”/2008-06-13/log-09-00-00.html

At the very least the absolute path for the log files will be configurable and individual log files will be organised according to the algorithm name.

2.10 Interaction of Qc2 and HQC

An objective of the Qc2 algorithms is to automate some of the well-determined and time-consuming tasks undertaken in HQC and make more time available for the HQC teams to work on the problems which require more human input. The scheduling of Qc2 algorithms has to be planned to provide the maximum benefit for HQC and the workload of HQC has to be modified so that attention is not put onto problems which Qc2 is scheduled to address later the same day.
Furthermore, where a Qc2 algorithm discovers data which is out of the scope of the performance of a particular algorithm, this data set has to be brought to the attention of HQC. This can be achieved through the associated flag settings, but the generation of ‘incident lists’, and graphical products for HQC can also be considered.
3 Example Implementation [RARR_24]
3.1 Redistribution of accumulated values algorithm

RARR_24 breaks down into the following steps:

1. Space controls run to determine data quality and space control run to determine values suitable for interpolation

2. Intepolated data calculated for all points (including missing rows as well as missing data -32767) using only RR_24 fd/c(12) = 1 as valid neighbours [i.e. dependent on a Qc1 result].

3. For data points where fd/c(12) = 2 and run of previous missing data or rows, vedistributed values calculated based on interpolated data and original accumulated value.
4. Depending on established criteria: set corrected value = redistributed value. Associated controlinfo flags are set. The kvalobs base library sets the corresponding useinfo flags.

3.2 Algorithm Testing

All new Qc2 algorithms will require rigorous testing to confirm the correct implementation and also test the choice of controls and different interpolation methods etc.

Redistribution of accumulated values

The algorithm was previously tested by comparing results with those obtained from HQC corrections [see QC2-Status-20080220.ppt (available in the wiki)].

A further validation has been undertaken by generating test data from real observations. For example, a set of valid [fd=1] observation of RR_24 are found in the database, see set (1) in the table below. The original data is summed and this value is substituted for the last entry in the set of observations, for the other days the missing value -32767 is substituted (2). The fictitious controlinfo value [9999999999992999] is introduced to keep track of the test data in the database. The original values are maintained in the corrected value. The algorithm is run on this data giving a set of interpolated values from the nearest neighbours and the result of the redistribution algorithm (3). Note, in the test the change in control and useinfo is not investigated (and no change is shown).

	StationID
	Date
	Original
	Model
	Corrected
	Algorithm
	Controlinfo
	Useinfo

	(1) Original data

	56520
	2007-09-17
	20.4
	
	20.4
	
	[1110000000001000]
	[7000000000000000]

	56520
	2007-09-18
	1.8
	
	1.8
	
	[1110000000001000]
	[7000000000000000]

	56520
	2007-09-19
	5.5
	
	5.5
	
	[1110000000001000]
	[7000000000000000]

	56520
	2007-09-20
	9.9
	
	9.9
	
	[1110000000001000]
	[7000000000000000]

	56520
	2007-09-21
	32.6
	
	32.6
	
	[1110000000001000]
	[7000000000000000]

	(2) Generated test data

	56520
	2009-09-17
	-32767
	
	20.4
	
	[9999999999992999]
	[7000000000000000]

	56520
	2009-09-18
	-32767
	
	1.8
	
	[9999999999992999]
	[7000000000000000]

	56520
	2009-09-19
	-32767
	
	5.5
	
	[9999999999992999]
	[7000000000000000]

	56520
	2009-09-20
	-32767
	
	9.9
	
	[9999999999992999]
	[7000000000000000]

	56520
	2009-09-21
	70.2
	
	32.6
	
	[9999999999992999]
	[7000000000000000]

	(3) Algorithm results

	56520
	2009-17-09
	-32767
	15.99
	20.4
	21.67
	[9999999999992999]
	[7000000000000000]

	56520
	2009-18-09
	-32767
	2.19
	1.8
	2.97
	[9999999999992999]
	[7000000000000000]

	56520
	2009-19-09
	-32767
	1.61
	5.5
	2.18
	[9999999999992999]
	[7000000000000000]

	56520
	2009-20-09
	-32767
	9.94
	9.9
	13.46
	[9999999999992999]
	[7000000000000000]

	56520
	2009-21-09
	70.2
	22.09
	32.6
	29.92
	[9999999999992999]
	[7000000000000000]

Further test data was generated following the method described above. The results of the test are presented below:

[image: image8.png]Algorithm Result RR_24/mm

100

920

80

70

60

50

40

30

I
40 50 60

Observed RR_24/mm

70

80

920

100

The test included 296 observations. The prototype uses a simple inverse distance weighted interpolation routine and extreme values are filtered by applying a threshold value. The challenge now is to minimise the variation exhibited in the curve above by the choice of interpolation algorithm, inclusion of height weighting and the selection of which neighbouring stations to use.

The definition of absolute performance requirements for such problems would help to select what is the most appropriate methods to employ in the RARR_24 algorithm.

The graph exhibits one extreme deviation at an observed value of 21.5 mm. The table below illustrate what occurred for this case. The interpolation method indicated that most rainfall at the neighbours occurred on 09/11/07 but the reported rainfall was on the 10/11/07.

	StationID
	Obstime
	Missing/Accumulated

(generated from the original observations)
	Interpolation
	Original
	RARR_24

	420
	09/11/0706:00
	-32767
	19.18
	-1
	20.16

	420
	10/11/0706:00
	-32767
	1.03
	21.5
	1.08

	420
	11/11/0706:00
	21.5
	0.25
	-1
	0.26

In a real case one would never know that such an anomaly was generated. A method to test for the confidence of each point is to compute the statistics of the stations used for each interpolation (these approaches are under development).
3.3 Rounding Errors
In the following data sample the redistributed data (REDIS) and previously corrected (CORR) data correspond (INTP is the interpolated model value). However, the redistribution introduces unfeasible measurement accuracy.
	STID
	DATE
	ORIG
	INTP
	CORR
	REDIS
	TYPEID
	CONTROLINFO
	USEINFO

	18030
	06/29/07
	16.5
	15.72
	16.5
	-10
	302
	[1110000000001000]
	[7000000000000000]

	18030
	06/30/07
	-32767
	0.78
	2.5
	0.63
	302
	[1000001000002006]
	[3895900000000070]

	18030
	07/01/07
	-32767
	2.56
	2
	2.07
	302
	[1000001000002006]
	[3895900000000070]

	18030
	07/02/07
	-32767
	0
	-1
	0
	302
	[1000001000002006]
	[3895900000000070]

	18030
	07/03/07
	7.5
	5.92
	3
	4.79
	302
	[1140000000002006]
	[3335900000000071]

For measurement consistency the results are rounded to one decimal place:
4.79 → 4.8 ; 0 → 0 ; 2.07 → 2.1; 0.63 → 0.6

((Here A=7.5 and S= 4.8 + 0 +2.1 +0.6 = 7.5, see below))
The errors introduced by the rounding can be checked by comparing the sum of the rounded values to the original accumulated value.

Sample of 747 Redistributions.
A = ACCUMULATED VALUE

S = SUM OF REDISTRIBUTED VALUES

	A - S
	-0.3
	-0.2
	-0.1
	0
	0.1
	0.2

	Number of observations
	1
	0
	42
	656
	47
	1

	% of total observations
	0.1 %
	0 %
	5.6 %
	87.8 %
	6.3 %
	0.1 %

A simple rounding is applied to the redistributed value. A correction could be made to ensure that the sum of the rounded values is equal to the original accumulated value. The statistics above regarding rounding errors do not indicate that an improved method is necessary. A method to perform the normalisations may even introduce more error than just keeping a simple rounding.

3.4 Flag Settings
Redistribution is applied to the data with the following characteristics:

· the data has been processed by the QC1 routine precipcollected_flag.pl
· controlinfo(12) == 2 {aka fd} and original data value ≠ -32767
· there is a contiguous sequence of preceding N-1 days (N>1) for which the original data has the missing data value -32767

· controlinfo(15) = 0 {fhqc}. If fhqc is non-zero it indicates that the data has been subject to Human Quality Control. The result of a HQC check is not modified.

· For all N points there are interpolated model values available from neighbouring observations,

The set of N days comprises (N-1) missing days with the Nth day providing the measurement of the accumulated precipitation over the N days.
After a redistribution the following flags are set in the prototype:

Controlinfo(12)

fd
= 8

WHY? :This is a spare distribution flag.

Possibly use an existing definition fd=6? (Original verdi er en oppsamlet verdi. Korrigert verdi er tilfordelt fra en oppsamlet verdi, metode ikke angitt).
Controlinfo(9)

fstat
= 3

WHY? : fstat corresponds to a statistical control. There is space in the definition of fstat for the definition of new flags. The flags Qc2done is set if fstat changes from the default value of zero.
	stationid
	obstime
	original
	paramid
	tbtime
	typeid
	sensor
	level
	corrected
	controlinfo
	useinfo
	cfailed

	
	
	
	
	
	
	
	
	
	
	
	

	BEFORE
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	53950
	2007-12-07 06:00:00
	9
	110
	2007-12-07 12:10:30
	302
	0
	0
	9
	1140000000001000
	7020400000000001
	QC1-2-72.b12:1,QC1-2-72.c12:1

	53950
	2007-12-08 06:00:00
	-32767
	110
	2007-12-09 00:36:39
	302
	0
	0
	-32767
	1000003000002000
	7899900000000000
	QC1-7-110:1

	53950
	2007-12-09 06:00:00
	-32767
	110
	2007-12-10 00:40:02
	302
	0
	0
	-32767
	1000003000002000
	7899900000000000
	QC1-7-110:1

	53950
	2007-12-10 06:00:00
	1.5
	110
	2007-12-10 11:25:20
	302
	0
	0
	1.5
	1140000000002000
	7330900000000001
	QC1-2-72.b12:1,QC1-2-72.c12:1,QC1-7-110:1

	
	
	
	
	
	
	
	
	
	
	
	

	AFTER
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	53950
	2008-12-08 06:00:00
	-32767
	110
	2007-12-09 00:36:39
	302
	0
	0
	0.2
	1000003003008000
	5896800000000001
	QC1-7-110:1,Qc2-R

	53950
	2008-12-09 06:00:00
	-32767
	110
	2007-12-10 00:40:02
	302
	0
	0
	0.1
	1000003003008000
	5896800000000001
	QC1-7-110:1,Qc2-R

	53950
	2008-12-10 06:00:00
	1.5
	110
	2007-12-10 11:25:20
	302
	0
	0
	1.3
	1140000003008000
	5926800000000002
	QC1-2-72.b12:1,QC1-2-72.c12:1,QC1-7-110:1,Qc2-R

	
	
	
	
	
	
	
	
	
	
	
	

	stationid
	obstime
	original
	paramid
	tbtime
	typeid
	sensor
	level
	corrected
	controlinfo
	useinfo
	cfailed

	
	
	
	
	
	
	
	
	
	
	
	

	BEFORE
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	83880
	2007-06-07 06:00:00
	0
	110
	2007-06-13 20:11:37
	402
	0
	0
	0
	[1140000000000000]
	[7020400000000001]
	QC1-2-72.c12:1

	83880
	2007-06-08 06:00:00
	-32767
	110
	2007-06-13 20:11:37
	402
	0
	0
	-32767
	[0000003000002000]
	[9999900000000000]
	

	83880
	2007-06-16 06:00:00
	-32767
	110
	2007-06-26 15:40:01
	402
	0
	0
	-32767
	[0000003000002000]
	[9999900000000000]
	

	83880
	2007-06-17 06:00:00
	-32767
	110
	2007-06-26 15:40:01
	402
	0
	0
	-32767
	[0000003000002000]
	[9999900000000000]
	

	83880
	2007-06-18 06:00:00
	35.2
	110
	2007-06-26 15:40:01
	402
	0
	0
	35.2
	[1140000000002000]
	[7320400000000001]
	QC1-2-72.c12:1

	
	
	
	
	
	
	
	
	
	
	
	

	AFTER
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	83880
	2007-06-08 06:00:00
	-32767
	110
	2007-06-13 20:11:37
	402
	0
	0
	0
	[0000003003008000]
	[5896800000000001]
	Qc2-R

	83880
	2007-06-16 06:00:00
	-32767
	110
	2007-06-26 15:40:01
	402
	0
	0
	1.2
	[0000003003008000]
	[5896800000000001]
	Qc2-R

	83880
	2007-06-17 06:00:00
	-32767
	110
	2007-06-26 15:40:01
	402
	0
	0
	8.8
	[0000003003008000]
	[5896800000000001]
	Qc2-R

	83880
	2007-06-18 06:00:00
	35.2
	110
	2007-06-26 15:40:01
	402
	0
	0
	25.2
	[1140000003008000]
	[5926800000000002]
	QC1-2-72.c12:1,Qc2-R

Change in User Info (this is the result of the kvalobs base libraries)
Note this is for typeid = 302

Missing value (-32767)
 [7899900000000000]

Redistributed Values 0.2 … [5896800000000001]

Useinfo(0)
7
QC1 Performed

5
QC1 and QC2 performed
Useinfo(1)
8
Original Missing

8
Original Missing
Useinfo(2)
9

9
No quality information
Useinfo(3)
9

6
Automatic redistribution
Useinfo(4)
9

8
Space control based on statistics
Accumulated Value (1.5) [7330900000000001]

Redistributed Value (1.3) [5926800000000002]

Useinfo(0)
7
QC1 Performed

5
QC1 and QC2 performed
Useinfo(1)
3
Long observation period

9
Status information not given
Useinfo(2)
3
Original value very suspicious
2
Original value very suspicious

Useinfo(3)
0
Not corrected

6
Automatic redistribution
Useinfo(4)
9
Consistency Control

8
Space control based on statistics
Also note: Useinfo(15)
2
kvalobs check counter has been incremented after the QC2 check

The above changes in useinfo are brought about by setting controlinfo, bits 12 and 9, to fd=8 and fstat=3, respectively.

Note this is for typeid = 402

Missing value (-32767)
 [9999900000000000]

Redistributed Values 1.2 … [5896800000000001]

Useinfo(0)
9

5
QC1 and QC2 performed
Useinfo(1)
9

8
Original Missing
Useinfo(2)
9

9
No quality information
Useinfo(3)
9

6
Automatic redistribution
Useinfo(4)
9

8
Space control based on statistics
Accumulated Value (35.2) [7320400000000001]

Redistributed Value (25.2) [5926800000000002]

Useinfo(0)
7
QC1 Performed

5
QC1 and QC2 performed
Useinfo(1)
3
Long observation period

9
Status information not given
Useinfo(2)
2
Original value very suspicious
2
Original value very suspicious
Useinfo(3)
0
Not corrected

6
Automatic redistribution
Useinfo(4)
4
Consistency Control

8
Space control based on statistics
Also note: Useinfo(15)
1
kvalobs check counter has been incremented after the QC2 check

The above changes in useinfo are brought about by setting controlinfo, bits 12 and 9, to fd=8 and fstat=3, respectively.

For both the examples (distinguished by typeid 402 and 302), the overall effect on useinfo is as desired, useinfo(0) changes to 5 indicating that both QC1 and QC2 checks have been run. Useinfo(3) changes to 6 indicating an automatic redistribution and useinfo(4), which is reserved to describe the most important control method, indicates a space control has been run.
It is observed that the original useinfo, for the data with typeid=402, is 9999900000000000; thus in QC1 the acton of precipcollected_flag.pl which sets controlinfo(12) = 2 and, controlinfo(6) = 3, original and corrected are missing, has no bearing on the useinfo.
PROBLEM:

· useinfo(1) moves to an undefined state.
This either indicates a modification to the kvalobs base library which sets the use info is made or the preliminary choice of controlinfo to (fd=8,fstat=3) is wrong.

Statistics

The behaviour of all the control and user flags for all data corrected by the redistribution function is summarised in the following table. The-shaded rows correspond to the examples provided above (grey: typeid 402, yellow: typeid 302).
	Before Qc2 Control
	After Qc2 Control
	

	Controlinfo
	Useinfo
	Controlinfo
	Useinfo
	#

	[1100000000002000]
	[7300000000000000]
	[1100000003008000]
	[5906000000000001]
	38

	[1110000000002000]
	[7300000000000000]
	[1110000003008000]
	[5906000000000001]
	93

	[1110000000002000]
	[73000000000000B0]
	[1110000003008000]
	[59060000000000B1]
	1

	[1110000000002000]
	[73000000000000D0]
	[1110000003008000]
	[59060000000000D1]
	1

	[1040000000002000]
	[7320400000000001]
	[1040000003008000]
	[5926800000000002]
	2

	[1140000000002000]
	[7320400000000001]
	[1140000003008000]
	[5926800000000002]
	85

	[1040000000002000]
	[7320400000000021]
	[1040000003008000]
	[5926800000000022]
	2

	[1040000000002000]
	[7320400000000041]
	[1040000003008000]
	[5926800000000042]
	1

	[1100000000002000]
	[7330900000000000]
	[1100000003008000]
	[5906000000000001]
	36

	[1110000000002000]
	[7330900000000000]
	[1110000003008000]
	[5906000000000001]
	71

	[1140000000002000]
	[7330900000000001]
	[1140000003008000]
	[5926800000000002]
	115

	[1110000000002000]
	[73309000000000D0]
	[1110000003008000]
	[59060000000000D1]
	3

	[1140000000002000]
	[73309000000000D1]
	[1140000003008000]
	[59268000000000D2]
	6

	[1110000000002000]
	[73309000000000E0]
	[1110000003008000]
	[59060000000000E1]
	2

	[1140000000002000]
	[73309000000000E1]
	[1140000003008000]
	[59268000000000E2]
	1

	[1600002000002000]
	[7338100000000001]
	[1600002003008000]
	[5938800000000002]
	1

	[1000003000002000]
	[7890900000000000]
	[1000003003008000]
	[5896800000000001]
	46

	[0000003000002000]
	[7899900000000000]
	[0000003003008000]
	[5896800000000001]
	180

	[1000003000002000]
	[7899900000000000]
	[1000003003008000]
	[5896800000000001]
	233

	[1000003000003000]
	[7899900000000000]
	[1000003003008000]
	[5896800000000001]
	2

	[0000003000000000]
	[9899900000000000]
	[0000003003008000]
	[5896800000000001]
	46

	[0000000000002000]
	[9999900000000000]
	[0000000003008000]
	[5996800000000001]
	4

	[0000003000002000]
	[9999900000000000]
	[0000003003008000]
	[5896800000000001]
	295

The table above indicates the majority of cases are well-behaved, but each needs to be analysed to establish if the desired result is made. The statistics can also be used to determine a set of controlinfo inputs which only should be considered. This effectively filters out the more peculiar cases. Analysis of the above data has already revealed a number of special cases which can be treated in the code.
3.5 Scheduling
Qc2 algorithms are by definition non-real-time. The exact timing requires the acquisition of sufficient data to make the application of a particular method statistically worthwhile coupled with balancing the workload (CPU, memory considerations) on the quality control system.
An important analysis is to study the data availability for a given algorithm. For the RR_24 example the following graph illustrates the time data arrives in the database as an offset from the measurement time of 06:00 UT. Seven months data for which fd=2 are illustrated.
[image: image9.png]Frequency

200

150

100

s0

Data Availability RR_24 (fd=2,typeid=302)

[, .

T T T T T 1
10 20 a0 a0 s0 60

offset [TableTime - ObsTimelhrs

Note: 0 offset corresponds to 06:00 UT
Only 8 hours after the observation time has the first bulk of data been acquired. Another peak in observations are acquired 18 hours after the observation time (corresponds to 24 UT). A set of observations are acquired up to 24-32 hours later (Sunday data sent on Monday?). The conclusion is that the redistribution check needs only to be run daily at 18 UT each day. This corresponds to the offsets 12, 36 and 60 hrs on the graph, i.e. after each of the peak data reception intervals, and also after nominal HQC activity. Another good time to schedule a run is at 20 hrs offset (02 UT), two hours after the peak at 18 hour offset.
There is also an interesting peak in acquired data at around 48 hours offset. This probably corresponds to measurements received on Monday morning corresponding to the preceding Saturday.
3.6 Missing Row Case

The RARR_24 prototype also handles the case where there are missing rows (i.e. missing days in a set of 24 hour precipitation measurements) in the database into which an accumulated value can be distributed. In this report an example of such a case is provided.

BEFORE. At the station 85440 measurement of RR_24 are provided every 7 days. The Qc2 control precipcollected_flag identifies the data as a 7 dayt accumulation.

	STID
	DATE
	ORIG
	INTP
	CORR
	REDIS
	TYPEID
	CONTROLINFO
	USEINFO

	85440
	05/29/07
	72.4
	0
	72.4
	-10
	302
	[0000000000002000]
	[9999900000000000]

	85440
	06/04/07
	0
	0.01
	0
	0
	302
	[0000000000002000]
	[9999900000000000]

	85440
	06/11/07
	3.4
	2.28
	3.4
	3.4
	302
	[0000000000002000]
	[9999900000000000]

	85440
	06/18/07
	53
	7.9
	53
	53
	302
	[0000000000002000]
	[9999900000000000]

	85440
	06/25/07
	12.5
	0.07
	12.5
	12.5
	302
	[0000000000002000]
	[9999900000000000]

	85440
	07/02/07
	0.2
	0.04
	0.2
	0.2
	302
	[0000000000002000]
	[9999900000000000]

	85440
	07/09/07
	0
	0.01
	0
	0
	302
	[0000000000002000]
	[9999900000000000]

	85440
	07/23/07
	19.5
	4.51
	19.5
	19.5
	302
	[0000000000002000]
	[9999900000000000]

	85440
	08/06/07
	56
	11.78
	56
	56
	302
	[0000000000002000]
	[9999900000000000]

	85440
	08/20/07
	32
	14.97
	32
	32
	302
	[0000000000002000]
	[9999900000000000]

AFTER. The data examples (two yellow rows above) are distribiuted over 7 days. (The table shows the final redistributed value but without it rewritten into the corrected value).
	STID
	DATE
	ORIGI
	INTP
	CORR
	REDIS
	TYPEID
	CONTROLINFO
	USEINFO

	
	
	
	
	
	
	
	
	

	85440
	06/12/07
	-32767
	13.81
	-32767
	18.16
	999
	[0000000000000000]
	[9999900000000000]

	85440
	06/13/07
	-32767
	0
	-32767
	0
	999
	[0000000000000000]
	[9999900000000000]

	85440
	06/14/07
	-32767
	4.74
	-32767
	6.24
	999
	[0000000000000000]
	[9999900000000000]

	85440
	06/15/07
	-32767
	6.78
	-32767
	8.91
	999
	[0000000000000000]
	[9999900000000000]

	85440
	06/16/07
	-32767
	4.61
	-32767
	6.06
	999
	[0000000000000000]
	[9999900000000000]

	85440
	06/17/07
	-32767
	2.3
	-32767
	3.02
	999
	[0000000000000000]
	[9999900000000000]

	85440
	06/18/07
	53
	8.07
	53
	10.61
	302
	[0000000000002000]
	[9999900000000000]

	
	
	
	
	
	
	
	
	

	85440
	06/19/07
	-32767
	0.9
	-32767
	3.06
	999
	[0000000000000000]
	[9999900000000000]

	85440
	06/20/07
	-32767
	1.19
	-32767
	4.04
	999
	[0000000000000000]
	[9999900000000000]

	85440
	06/21/07
	-32767
	1.07
	-32767
	3.64
	999
	[0000000000000000]
	[9999900000000000]

	85440
	06/22/07
	-32767
	0.01
	-32767
	0.03
	999
	[0000000000000000]
	[9999900000000000]

	85440
	06/23/07
	-32767
	0.44
	-32767
	1.48
	999
	[0000000000000000]
	[9999900000000000]

	85440
	06/24/07
	-32767
	0
	-32767
	0.01
	999
	[0000000000000000]
	[9999900000000000]

	85440
	06/25/07
	12.5
	0.07
	12.5
	0.23
	302
	[0000000000002000]
	[9999900000000000]

	
	
	
	
	
	
	
	
	

Further analysis is required here to establish the controlinfo and useinfo flags to be set.

4 Conclusion
The prototyping phase has identified a number of design decisions and gaps in the specification which need to be worked on to finalise the Qc2 system. Each item is summarised in the table below. Feedback on these issues is requested.

	#
	Description

	Open design issues: these can be critical to the overall end result, so feedback on these issues is a priority.

	1.
	Communication of Qc2 with Qc1 daemons. When Qc2 updates a value in the kvalobs database all interested processes need also to be informed. In the prototype this is achieved by sending a message directly to the kvServiced that new data is available. Other options are to have the communication handled through kvManagerd, or to use an independent system (even a different architecture).

	2.
	Qc2 task management: The Qc2 prototype runs each task sequentially and the process is controlled by an external configuration file. Are any more sophisticated options required? For example: (i)monitoring of database contents and running algorithms when a data availability criteria is met, (ii)utilisation of a work queue concept as in Qc1, (iii)or the capability to run Qc2 algorithms in parallel?.

	3.
	Useinfo. The initial plan is not to change the set up of useinfo flags as defined in the kvalobs libraries. The Qc2 controls and functions will change the controlinfo and the useinfo will change as a result of that. The impact on the useinfo will be tested and only then will any need for modification to the kvalobs library handling the useinfo be identified. The changes though to “turn on” the qc2 flags inside the kvalobs lib will require regression testing of the kvalobs Qc1 system and downstream useinfo settings. The issue is that Qc2 will manage the controlinfo but the impact on the useinfo is unknown.

	4.
	End User Interface. The current plan is to have all of the Qc2 algorithms as compiled code. With user control limited to defining and submitting configuration files. Even though the large data management aspects of Qc2 favours compiled code over the use of a scripting language (e.g. like the use of Perl in Qc1) are there requirements for such interfaces for any particular tasks? A Perl, or Python, etc … option could be included.

	5.
	Interaction with HQC. At the minimum this occurs by Qc2 setting flags which are brought to the attention of HQC. Additional interaction can be implemented by special Qc2 incident lists and also plots of the interpolated fields (including parameters such as standard deviation) – hotspots indicate areas where the Qc2 algorithms may have produced unreliable results.

	6.
	Model Output. The model output, e.g, interpolations generated during a control will be stored in netCDF files for future re-use and comparison. Other formats or another database could also be used: just needs to be defined. A switch may be made to using HDF5 since it supports the definition of user defined data-types.

	#
	Description

	7.
	Lessons learned from Qc1. The Qc2 prototype reuses components from Qc1: kvManagerd, kvQabased, and the database connection and CORBA architecture in general. Are there any components which are recommended to be redeveloped in conjunction with Qc2?

	Ongoing tasks: part of the work on the general specification

	8.
	Specification of algorithms and naming convention for algorithms.

	9.
	Specification of controlflags for each algorithm.

Preferred method to track effect of “the same” algorithm run with different interpolation methods etc. (store information in flags, cfailed?).

	10.
	Specification of the required contents of configuration files. (This will also always be linked to the development of new algorithms).

	11.
	Specification of name and location of logfiles.

	12.
	For RARR_24 the specification of flags for the missing row case.

There is a bookmark here:

QC2 Controlled Observations�model values, corrected values, flags, products for HQC?

-Interpolation�	Simple, Spline�	Kriging�	…�+Distribute RR_24�+Dip Correction�+Generate QC Products�+Set Flags�…

-Space Control�	Detect Outliers�	Construct Variogram�	…

+Dip Test�+Statistical Checks�+Set Flags�…

QC1 Controlled Observations

QC2 Functions

QC2 Controls

kvQC2

kvQC2

[A]

[B]

[image: image10.png]kuManagerd

Data provider

D

kvQabased

]

kuServiced

Data recelver

[image: image11.png]>

kvDatalnputd

X

Data provider

]

kvserviced

Data receiver

>

kvQabased

