EMEP and WRF (EMEP4UK) Brief introduction

Massimo Vieno

Air Pollution Modeller Natural Environment Research Council, Centre for Ecology and Hydrology,

Visiting scientist University of Edinburgh,School of Geosciences

I want and the state

Email: mvi@ceh.ac.uk

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

EMEP-WRF interface

Variables needed by the EMEP model

From the EMEP rv4.3 user guide

Table 2.2: Input meteorological data used in the EMEP/MSC-W Model

Parameter	Unit	Description
3D fields - for 20 σ levels		
u, v	m/s	Horizontal wind velocity components
q	kg/kg	Specific humidity
θ	K	Potential temperature
CW	kg/kg	Cloud water
CL	%	3D Cloud cover
cnvuf	kg/sm^2	Convective updraft flux
cnvdf	kg/sm^2	Convective downdraft flux
PR	mm	Precipitation
2D fields - for Surface		
PS	hPa	Surface pressure
T2	Κ	Temperature at 2m height
Rh2	%	Relative humidity at 2m height
SH	W/m^2	Surface flux of sensible heat
LH	W/m^2	Surface flux of latent heat
au	N/m^2	Surface stress
SST	K	Sea surface temperature
SWC	m^{3}/m^{3}	Soil water content
lspr	m	Large scale precipitation
cpr	m	Convective precipitation
sdepth	m	Snow depth
ice	%	Fraction of ice
SMI1		Soil moisture index level 1
SMI3		Soil moisture index level 3
u10/v10	m/s	wind at 10 m height

How to setup a WRF domain for EMEP

RESEARCH COUNCIL

WRF setup to match the EMEP model domain

A 4 steps procedure to setup a new WRF domain:

Setting the domain and sub-domain GRID setup

```
&geogrid
parent_id
               = 1, 1, 2, 3, 3, 3
parent_grid_ratio = 1,5,2,5,5,
i_parent_start = 1,65,25,40,210,
j_parent_start = 1,40,15,130,105,
            = 171, 171, 271, 321, 261,
e_we
           = 134, 161, 271, 371, 371,
e_sn
dx = 50000.
dy = 50000,
map_proj = 'polar',
ref_lat = 57,
ref_lon = 6,
truelat1 = 60.
truelat2 = 90,
stand lon = -32,
```

1. Define a model coarse domain and any nested domains – geogrid.exe

- 2. Extract meteorological fields from GRIB data sets (NCEP or ECMWF) ungrib.exe
- 3. Horizontally interpolate meteorological fields to the model domains metgrid.exe
- 4. Vertically interpolate the meteorological fields and if required setting the data for nudging real.exe

...Running the WRF model... - wrf.exe

August 2008 – Scotland and Netherlands

How good are the main met variables?

• Temperature seems to be ok

• Wind speed and direction ok-ish

 Precipitation timing ok but problem with magnitude - also some issues on fine domain

Temperature vs. UK AWS MIDAS

Example of 2001 3-hourly WRF calculated surface temperature for Bedford

2m Temperature bias for all sites..

Model-observations annual average bias

2001

2002

Some sites are consistently underestimate or overestimate 2m temperature

Temperature : WRF 3.1 – 2009 ~200 sites across the UK

Does high res help with elevated sites?

- WRF 3-hourly Meteorology
 - 2 months of computing time 80 processors
- Meteorology UK analysis (MIDAS 190 UK sites)

Way to improves....higher resolution CAIRNGORM SUMMIT 1245 m

Grid size	Model WRF	Obs MIDAS	Bias	Slope	R ²
50 km²	6	0.9	-5.1	0.91	0.8
5 km²	3.5	0.9	-2.6	0.94	0.9
1 km2	2.8	0.9	-1.9	0.95	0.9

Wind speed - direction

Fig. 2. Time series of hourly modelled (red, black) and observed (blue, pale blue) 10 m wind speed (bottom, m s^{-1}) and 10 m wind direction (top, degrees) at Wattisham.

Rainfall pattern

1 km²

1 km²

With a parent ratio of 5 the edge of the domain may have side effects

It is probably better to use a parent ratio of 3

Also the average total rainfall fo the UK is ½ the UK met office rainfall map

10 km²

50 km²

 5 km^2

52°N

Non standard EMEP domain setup

- Creating the emissions for the relevant scale (<5 km²)
- Re-projection of natural emissions (i.e. DMS)
- Default land cover (.nc) not fine enough for <5 km² domain I use WRF-MODIS instead
 - Perhaps WRF MODIS derived land cover should always be use in EMEP-WRF

Emissions example

Model validation specific to the UK

ABERDEEN urban 2008 (57.15736,-2.094278)

AURN vs. EMEP4UK >90 sites across the UK for hourly ozone, NOx, SO2, PM25

Not all site measure everything

