EMEP model: History, Principles

David Simpson
Outline:

• Brief history
• Aims
• Code design + principles
In the beginning:

- **OECD project**
 - Lagrangian model - enabled «fair» calculations of transport between countries
 - First long-range transport model
 - Used to calculate “blame” matrix
 - Sulphur

 => EMEP (*MSC-W, MSC-W and CCE*)
In the beginning:

- OECD project
 - Lagrangian model - enabled «fair» calculations of transport between countries
 - First long-range transport model
 - Used to calculate “blame” matrix
 - Sulphur

=> EMEP (MSC-W, MSC-W and CCE)
Next step: NOx

- NOx model, 1985 …
 - Lagrangian, performed rather well.
 Basis of 1st Gothenburg multi-pollutant multi-effect Protocol
Next step: NOx

• NOx model, 1985 …
 - Lagrangian, performed rather well.
 Basis of 1st Gothenburg multi-pollutant multi-effect Protocol
Onwards to Ozone

- O3 model, 1992 ...
 - Lagrangian - also performed rather well!
Eulerian: 1990s

• Eulerian acid deposition model
 - Erik Berge and Roar Skaalin
• Designed from scratch for parallel computing
 - Basis of today's fast code
 - EMEP models are almost perfectly scalable
• Eulerian acid deposition - mid 1990s
• Eulerian ozone - late 1990s
Eulerian: 1990s

- Eulerian acid deposition model
 - Erik Berge and Roar Skaalin

- Designed from scratch for parallel computing
 - Basis of today's fast code
 - EMEP models are almost perfectly scalable

- Eulerian acid deposition - mid 1990s
- Eulerian ozone - late 1990s
Unified model: 2003

- Achieved 2003
- Merged Eulerian acid deposition and ozone codes, also using routines (chemistry, emissions) from Lagrangian O3 code.
- Nearly 100% pure F90/F95
- Aims:
 - To attain one model structure
 - To avoid divergence
Unified model: 2003

- Achieved 2003
- Merged Eulerian acid deposition and ozone codes, also using routines (chemistry, emissions) from Lagrangian O3 code.
- Nearly 100% pure F90/F95
- Aims:
 - To attain one model structure
 - To avoid divergence
Public domain:

• First: 2007

• Why?
 - EMEP is a Community - should have a community model
 - To encourage use of EMEP model among Parties/scientists
 - To help improve model
Pros and Cons:

• Cons:
 - MSC-W has few resources for documentation and follow-up, we are usually overwhelmed with work
 - Aids `competitors'
 - Possibility of “mis-use”
Pros and Cons:

- Pros:
 - Involves more scientists, better evaluation and acceptance of model
 - Possibility of users to influence model development, and hence policy results
 - Build community (as with e.g. WRF)
Examples:

• EMEP4HR:
 - Application of EMEP model to Croatia
 - Focus on evaluation of turbulence and Hmix
 - → new routines in core EMEP

• EMEP4UK
 - Application in UK, originally at 5km scale
 - Now down to 1km
 - Development of WRF+EMEP link
 - Extensive evaluation
Code design?

• Modular
 - e.g. different chemical schemes, different aerosol modules, ... (in progress)

• Flexible
 - Global to 1 km scale
 - Meteorology from PARLAM, ECMWF, WRF, Aladin
 - See talks by Peter, Massimo
Code flaws?

• Yes, there are some ;-)

- The MSC-W team has a heavy workload, with a constant need to extract special outputs, add new components, etc,.. often leading to ad-hoc solutions

- e.g. system for outputs is rather messy - needs clean

- Contributions to code improvement very welcome!
Philosophy, concepts?

• G.E.P. Box
 - All models are wrong, but some are useful

• Einstein:
 - Models should be as simple as possible, but no simpler
 - (not sure we follow this one these days!)
Philosophy, concepts?

• **Main ideas:**
 - to capture the main atmospheric processes, keeping a balance between different components.
 - Make sure model is grounded in measurements!
 - ... but, prefer sound science over best-possible result for specific compounds - avoid tuning.
 - Make sure the model is useful!
An aside: surface $\Delta z = 90$ m - is that a flaw?

• No it is good :-)
 - can be discussed...

 - With 90m we resolve analytically differences over forest, grass, water.
 - Very difficult with 20m layer!
 - Okay down to ~ 5 km (fetch)
An aside: surface $\Delta z = 90$ m
- is that a flaw?

- No it is good :-)
 - can be discussed...
 - With 90m we resolve analytically differences over forest, grass, water.
 - Very difficult with 20m layer!
 - Okay down to ~ 5 km (fetch)
Philosophy, concepts, cont.

• Open:
 - The code is public domain, and documented.
 - Model performance is assessed continuously, with results (good and bad) published on the web and in reports
 - Build community (as with e.g. WRF)
Philosophy, concepts, cont.

• Open:
 - The code is public domain, and documented.
 - Model performance is assessed continuously, with results (good and bad) published on the web and in reports
 - Build community (as with e.g. WRF)

• So, here we are!
Some EMEP papers of historical interest..

- Eliassen, A. The OECD study of long-range transport of air pollutants..., Atm. Env., 1978, 12, 479-487
- Hov, Ø.; Eliassen, A. & Simpson, D. Isaksen, I. (Ed.) Calculation of the distribution of NO$_x$ compounds in Europe..., Regional and global scale interactions, D. Reidel, 1988, 239-262
- Jonson, J.; et al., EMEP Eulerian model for atmospheric transport and deposition of nitrogen species over Europe Environ. Poll., 1998, 102, 289-298
- Simpson, D.; et al., The EMEP MSC-W chemical transport model -- technical description Atmos. Chem. Physics, 2012, 12, 7825-7865

- BUT SEE www.emep.int (or Simpson et al., 2012) for many more!!!
The end.