Meteorologisk institutt

An example of EMEP model policy applications: Source-receptor calculations (SR)

Michael Gauss Norwegian Meteorological Institute, Oslo, Norway

EMEP modelling course, Oslo, 29-30 April 2019

VOC limited

NOx limited

SR relationships depend on ...

- Distance, wind speed/direction, and other meteorological conditions
- Emissions, and distribution of emissions within the sources/receptors
- Emissions from other sources
- Size of the receptor area
- ... and a lot more.

SR - policy questions

- What are the causes of air pollution?
 - which industrial sectors, which countries or areas, ...
- Natural vs. antropogenic contributions
- Indigenous vs. long-range transported contributions
- What can we do about it?
 - short-term measures, quick response
 - long-term measures

EMEP SR products

- Country-to-country blame matrices (traditional)
 - Every year: 250 annual model runs (5 species × 50 countries/regions)
 - For EMEP status reports, OSPAR and HELCOM reports, input to GAINS model, Gothenburg protocol
- Sector-specific source attribution
 - Every five to ten years or so: ~1000 annual model runs
- SR forecasts for selected cities (since ~2010)
 - Daily pre-operational service: ~50 five-day model runs
 - Copernicus Atmosphere Monitoring Service, website
- "Local fraction" per grid (since ~2017)
 - Calculates fluxes across grid cell boundaries
 - uEMEP / research

Source-receptor relationships

Calculation of the 'blame matrix' B

$$B_{ij} = \frac{\Delta C_j}{\Delta E_i}$$

where

B_{ii} is the transfer coefficient from source i to receptor j

 ΔE_i = emission change in emissions from source i

 ΔC_i = change in concentration in receptor j

EMEP MSC-W reports

- https://www.emep.int
- https://www.emep.int/mscw
- https://www.emep.int/mscw/mscw_publications.html
- https://emep.int/publ/reports/2018/EMEP_Status_Report_1_2018.pdf

C:4

Table C.1: 2016 country-to-country blame matrices for **oxidised sulphur** deposition. Units: 100 Mg of S. **Emitters** \rightarrow , **Receptors** \downarrow .

	AL	AM	AT	ΑZ	ΒA	BE	BG	ΒY	CH	CY	CZ	DE	DK	EE	ES	FI	FR	GB	GE	GR	HR	HU	IE	IS	IT	KG	ΚZ	LT	LU	LV	MD	ME	
AL	34	0	0	0	5	0	1	0	0	0	0	0	0	0	1	0	0	0	0	4	0	0	0	0	5	0	0	0	0	0	0	4	AL
AM	0	68	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	-0	0	0	0	AM
AT	0	0	31	0	7	1	1	0	1	0	18	37	0	0	1	0	3	1	0	0	1	1	0	0	3	0	0	0	0	0	0	1	AT
ΑZ	0	21	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	5	0	0	0	0	0	ΑZ
BA	1	0	1	0	302	0	2	0	0	0	4	3	0	0	2	0	1	0	0	1	3	2	0	0	5	0	0	0	0	0	0	15	BA
BE	0	-0	0	-0	0	50	0	0	0	-0	0	17	0	0	1	0	15	6	-0	0	0	0	0	0	0	-0	0	0	0	0	0	0	BE
BG	2	0	0	0	11	0	181	1	0	0	2	2	0	0	1	0	0	0	0	18	0	1	0	0	2	0	1	0	0	0	1	6	BG
ΒY	0	0	1	0	9	1	5	103	0	0	11	22	1	3	1	2	2	3	0	1	0	1	0	0	1	0	3	6	0	1	1	3	ΒY
CH	0	0	0	0	0	0	0	0	14	0	1	7	0	0	2	0	8	1	0	0	0	0	0	0	3	0	0	0	0	0	0	0	CH
CY	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	CY
CZ	0	0	3	0	6	1	1	0	0	0	158	48	0	0	1	0	3	2	0	0	1	2	0	0	1	0	0	0	0	0	0	1	CZ
DE	0	0	6	0	4	32	0	1	5	0	56	702	1	1	7	0	48	28	0	0	0	1	1	0	2	0	0	1	1	0	0	0	DE
DK	0	0	0	0	0	2	0	0	0	0	2	18	9	0	1	0	2	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DK
EE	0	0	0	0	1	0	0	2	0	0	1	4	0	14	0	4	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	EE
ES	0	0	0	0	1	1	0	0	0	0	1	4	0	0	371	0	7	2	-0	0	0	0	0	0	2	0	0	0	0	0	0	0	ES
FI	0	0	0	0	2	1	1	3	0	0	5	13	1	13	1	68	1	3	0	0	0	0	0	0	0	0	1	2	0	0	0	0	FI
FR	0	0	1	0	2	16	0	0	3	0	6	59	0	0	87	0	308	31	0	0	1	0	1	0	9	0	0	0	1	0	0	0	FR
GB	0	0	0	-0	0	4	0	0	0	0	2	17	0	0	7	0	12	286	-0	0	0	0	7	1	0	0	0	0	0	0	0	0	GB
GE	0	14	0	5	1	0	1	0	-0	1	0	0	0	0	0	0	0	0	34	1	0	0	0	0	0	0	2	0	0	0	0	0	GE

APPENDIX C. SR TABLES FOR 2016

Table C.1 Cont.: 2016 country-to-country blame matrices for **oxidised sulphur** deposition. Units: 100 Mg of S. **Emitters** \rightarrow , **Receptors** \downarrow .

	MK	ΜT	NL	NO.	PL	PT	RO	RS	RU	SE	SI	SK	ΤJ	ТΜ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	SUM	EXC	EU	
AL	11	0	() ()	1	0	0	14	0	0	0	0	0	0	6	2	0	0	0	0	9	0	0	12	7	3	50	172	90	15	AL
ΑМ	0	0	0	0 (0	0	0	0	1	0	0	0	0	0	44	0	0	0	0	0	1	0	90	3	14	0	5	231	118	1	٨N
AT	0	0	0	0 (23	0	1	19	1	0	2	2	0	0	2	2	0	0	0	0	2	0	0	3	6	1	5	181	163	128	AT
ΑZ	0	0	() ()	0	0	0	0	8	0	0	0	0	0	48	5	0	0	0	0	1	0	195	4	25	1	8	356	122	2	ΑZ
BA	1	0	() ()	10	0	3	109	1	0	0	2	0	0	4	5	0	0	-0	0	6	0	0	12	8	2	20	528	479	40	BA
BE	0	0	5	5 O	1	0	0	0	0	0	0	0	-0	-0	0	0	-0	1	0	0	0	2	0	1	2	3	0	106	98	97	BE
BG	20	0	() ()	9	0	25	63	8	0	0	1	0	0	82	30	0	0	0	3	10	0	3	14	17	2	43	560	468	244	BG
BY	2	0	1	0	140	0	9	25	68	1	0	3	0	0	46	106	-0	1	1	1	2	1	2	5	11	3	14	623	582	216	BY
СН	0	0	() ()	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	3	3	1	1	50	40	24	CH
CY	0	0	() ()	0	0	0	0	0	0	0	0	0	0	15	0	0	0	0	0	1	0	4	2	2	1	2	32	19	4	CY
CZ	0	0	1	0	66	0	2	20	1	0	1	4	0	0	1	3	0	0	0	0	1	0	0	2	5	1	2	339	328	294	CZ
DE	0	0	22	2 0	89	1	1	11	4	0	0	2	0	0	1	4	-0	6	1	0	3	6	0	6	19	16	3	1096	1034	1005	DE
DK	0	0	2	2 0	12	0	0	1	2	0	0	0	0	0	0	1	-0	1	1	0	0	1	0	0	2	6	0	73	61	56	DK
EE	0	0	() ()	13	0	0	2	12	1	0	0	-0	0	1	4	-0	0	1	0	0	0	0	0	2	2	0	70	64	42	EE
ES	0	0	() ()	2	19	0	1	0	0	0	0	-0	-0	0	0	-0	41	0	0	62	0	0	79	54	28	4	683	415	412	ES
FI	0	0	1	2	31	0	1	5	87	9	0	1	0	0	5	12	-0	2	2	0	0	1	0	1	9	14	2	301	269	151	FI
FR	0	0	6	5 O	13	4	0	6	2	0	0	1	0	0	2	1	0	37	0	0	41	7	0	49	47	44	14	802	563	545	FR
GB	0	0	4	0	6	1	0	0	2	0	0	0	0	0	0	1	-0	28	0	0	1	5	0	1	19	37	0	445	353	348	GB
GE	0	0	() ()	1	0	1	2	7	0	0	0	0	0	121	8	0	0	0	2	2	0	89	5	20	1	12	329	198	4	GE

Contributions to SOMO35 in Germany

... in 2016 due to NOx emissions

Contributions to SOMO35 in the Netherlands

... in 2016 due to NOx emissions in 2016

Sources of S deposition to Croatia

Inter-annual variability in B

- ... is mainly due to:
- changes in meteorology and emissions
- updates to the model code / emissions

 \rightarrow Calculation of 'weather-normalized' changes:

 $\Delta C_j(y_m) = \Delta E_i * B_{ij}(y_m) + BIC(y_m) \quad e.g. \ y_m = 1995 \dots 2014$

Copernicus Atmosphere Monitoring Service

Atmosphere Monitoring

- **Copernicus** is the European Union's Earth Observation Programme, divided into six thematic streams, including '*Atmosphere'* (CAMS)
- **CAMS** products are available free of charge
- **CAMS** products cover the global and regional scales (not local)

https://atmosphere.copernicus.eu/

CAMS - Daily Source allocation

Atmosphere Monitoring

Tool developed and maintained by:

https://policy.atmosphere.copernicus.eu/DailySourceAllocation.html

CAMS - Daily Source allocation

O Norwegian Meteorological Institute

Atmosphere Monitoring

 \mathcal{A}

Norwegian Meteorological Institute

CAMS - Daily Source allocation

Atmosphere Monitoring

4

A new feature of EMEP: *u*EMEP

*u*EMEP (urban EMEP) consists of two parts

- A method for calculating the local contribution of emission sources to the gridded concentrations, known as **local fraction**
- A method for downscaling the local fraction contribution from EMEP to high resolution sub-grids of ~50 m. Achieved by redistribution or replacement of emissions and Gaussian dispersion modelling

.. can be applied on both hourly and annual data and at all EMEP resolutions

Local fractions in EMEP (LF-EMEP)

- Built into the EMEP model, fluxes are followed through the model domain to the surrounding grids (i.e. not parameterized, but calculated at each timestep: emis., adv., diff., dep., chem.)
- With this we know the fractional contribution to each grid from all the neighbouring grids ('local region'), e.g. 5 x 5 or 20 x 20 surrounding grids
- Knowing this we can calculate source contributions to or from the 'local region', and/or use this information to downscale only this local source contribution within an EMEP grid

The local fractions visualization tool

The local fractions visualization tool

Conclusions

- Annual source-receptor calculations have for decades been one of the main products from EMEP to the UN LRTAP Convention (in addition to status and trends)
- During the last 10 to 15 years more products have been developed, both for research (HTAP) and for policy applications and public users (CAMS, uEMEP)
- The computational efficiency of the EMEP model is key to the success of these applications