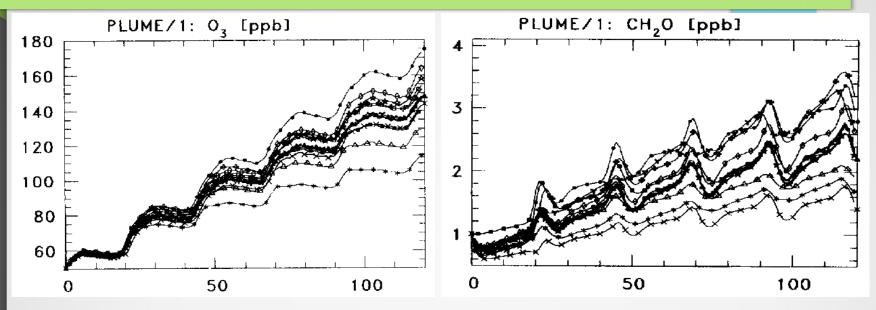
EMEP MSC-W model

EMEP MSC-W model: Chemistry, status + changes

David Simpson

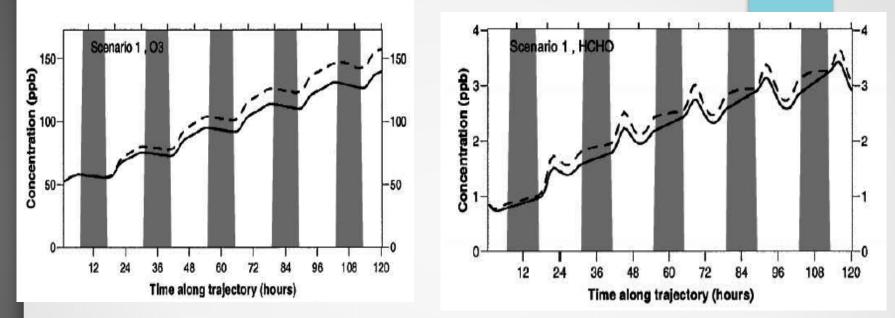
O Norwegian Meteorological Institute

Outline:

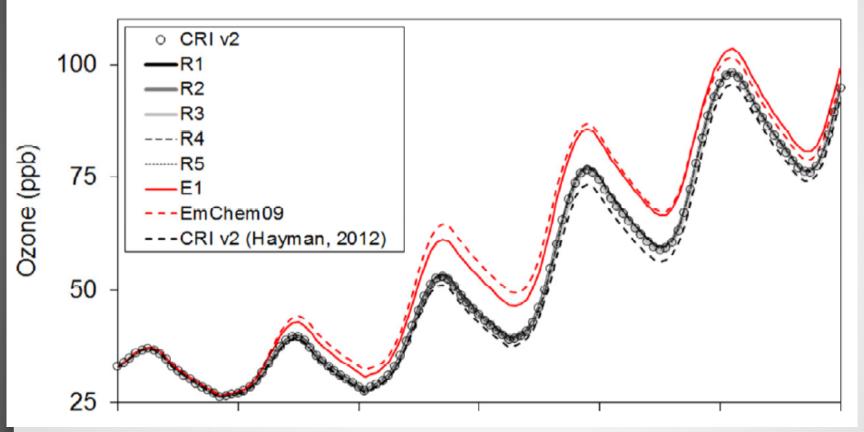

- Gas-phase chemistry
- SOA module
- Code structure
- Recent updates
- Miscellaneous (GenChem, other schemes)

Gas-phase chemistry:

EmChem09


- 72 species
- 137 reactions
- 10 VOC (1 BVOC = isoprene)
- Update of previous EMEP chemical schemes, which date back to Eliassen, Hov, et al 1982
- •'Surrogate species' method, with relatively more RO2 chemistry than e.g. CB schemes

Kuhn et al., Atm.Env., 1998, with EMEP, IVL, 4 x RADM, 3 x CB4, ...


Follow-up: EMEP vs most complex (IVL): comparisons.....

Andersson-Sköld & Simpson, Atm.Env., 1999, same setup as Kuhn et al. (+other cases)

EMEP model compared well :-)

2009: Comparison with CRI model.

Ozone changes (c/o Mike Jenkin), simple plume
CRI v2 ~ 1000 reactions, 112 AVOC

Comparison with CRI model.

Radicals (c/o Mike Jenkin)

• How do we handle chemistry in the model?

ChemFunctions ml.f90 •CM files: Chem ml.f90 CM BoundaryConditions.inc CM BoundaryConditions.inc.txt CM ChemGroups ml.f90 CM chempackages.txt CM ChemRates ml.f90 CM ChemSpecs ml.f90 CM DryDep.inc CM EmisBioNat.inc CM EmisFiles.inc CM emislist.csv CM EmisSpecs.inc CM Reactions1.inc CM Reactions2.inc

CM_WetDep.inc

•CM_ChemSpecs_ml

• Species -

- Number
- Indices

!>
module ChemSpecs_adv_ml
<pre> integer, public, parameter :: NSPEC_ADV = 126</pre>
<pre>integer, public, parameter :: & IXADV_03 = 1 & , IXADV_N0 = 2 &</pre>
end module ChemSpecs_adv_ml !>_
<pre>module ChemSpecs_shl_ml !</pre>
IXSHL_OD = 1 & , IXSHL_OP = 2 &
 !
<pre>integer, public, parameter :: NSPEC_TOT = 142</pre>
<pre>integer, public, parameter :: & OD = 1 & , OP = 2 &</pre>
OD = 1 &

•CM_ChemSpecs_ml

+ characteristics

...

```
contains
subroutine define_chemicals()
```

			MW	NM	С	Ν	S	ExtC	C*	dH	
species(OD) = Chemical(" <mark>OD</mark>	۰,	16.0,	Θ,	Θ,	Θ,	Θ,	0.0,	0.0,	0.0)
species(OP) = Chemical(" <mark>OP</mark>	۰,	16.0,	Θ,	Θ,	Θ,	Θ,	0.0,	0.0,	0.0)
species(OH) = Chemical(" <mark>OH</mark>	۰,	17.0,	Θ,	Θ,	Θ,	Θ,	0.0,	0.0,	0.0)
species(HO2) = Chemical("HO2	۰,	33.0,	0,	0,	Θ,	0,	0.0,	0.0,	0.0)
species(03) = Chemical(" <mark>03</mark>	۰,	48.0,	Θ,	Θ,	Θ,	Θ,	0.0,	0.0,	0.0)
species(NO) = Chemical(" <mark>NO</mark>	۰,	30.0,	Θ,	Θ,	1,	Θ,	0.0,	0.0,	0.0)
species(NO2) = Chemical("NO2	۰,	46.0,	Θ,	Θ,	1,	Θ,	0.0,	0.0,	0.0)
species(PAN) = Chemical("PAN	_",	121.0,	Θ,	2,	1,	Θ,	0.0,	0.0,	0.0)
species(NO3) = Chemical("NO3	۰,	62.0,	Θ,	0,	1,	0,	0.0,	0.0,	0.0)
	species(OP species(OH species(HO2 species(O3 species(NO species(NO2 species(PAN	<pre>species(OP) = Chemical("OP species(OH) = Chemical("OH species(HO2) = Chemical("HO2 species(O3) = Chemical("HO2 species(N0) = Chemical("N0 species(N02) = Chemical("N02 species(PAN) = Chemical("PAN</pre>	<pre>species(OP) = Chemical("OP ", species(OH) = Chemical("OH ", species(HO2) = Chemical("HO2 ", species(O3) = Chemical("HO2 ", species(NO) = Chemical("NO ", species(NO2) = Chemical("NO2 ", species(PAN) = Chemical("PAN,</pre>	<pre>species(OD) = Chemical("OD ", 16.0, species(OP) = Chemical("OP ", 16.0, species(OH) = Chemical("OH ", 17.0, species(HO2) = Chemical("HO2 ", 33.0, species(NO) = Chemical("HO2 ", 48.0, species(NO) = Chemical("NO ", 30.0, species(NO2) = Chemical("NO2 ", 46.0, species(PAN) = Chemical("PAN", 121.0,</pre>	<pre>species(0D) = Chemical("0D ", 16.0, 0, species(0P) = Chemical("0P ", 16.0, 0, species(0H) = Chemical("0H ", 17.0, 0, species(H02) = Chemical("H02 ", 33.0, 0, species(03) = Chemical("H02 ", 33.0, 0, species(N0) = Chemical("N0 ", 30.0, 0, species(N02) = Chemical("N02 ", 46.0, 0, species(PAN) = Chemical("PAN ", 121.0, 0,</pre>	<pre>species(OD) = Chemical("OD ", 16.0, 0, 0, species(OP) = Chemical("OP ", 16.0, 0, 0, species(OH) = Chemical("OH ", 17.0, 0, 0, species(HO2) = Chemical("HO2 ", 33.0, 0, 0, species(NO) = Chemical("O3 ", 48.0, 0, 0, species(NO) = Chemical("NO ", 30.0, 0, 0, species(NO2) = Chemical("NO2 ", 46.0, 0, 0, species(PAN) = Chemical("PAN ", 121.0, 0, 2,</pre>	<pre>species(OD) = Chemical("OD ", 16.0, 0, 0, 0, species(OP) = Chemical("OP ", 16.0, 0, 0, 0, 0, species(OH) = Chemical("OH ", 17.0, 0, 0, 0, 0, species(HO2) = Chemical("HO2 ", 33.0, 0, 0, 0, 0, species(NO) = Chemical("O3 ", 48.0, 0, 0, 0, 0, species(NO) = Chemical("NO ", 30.0, 0, 0, 1, species(NO2) = Chemical("NO2 ", 46.0, 0, 0, 1, species(PAN) = Chemical("PAN ", 121.0, 0, 2, 1,</pre>	<pre>species(OD) = Chemical("OD ", 16.0, 0, 0, 0, 0, 0, 0, species(OP) = Chemical("OP ", 16.0, 0, 0, 0, 0, 0, 0, species(OH) = Chemical("OH ", 17.0, 0, 0, 0, 0, 0, 0, species(HO2) = Chemical("HO2 ", 33.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0</pre>	<pre>species(OD) = Chemical("OD ", 16.0, 0, 0, 0, 0, 0, 0.0, species(OP) = Chemical("OP ", 16.0, 0, 0, 0, 0, 0, 0, 0.0, species(OH) = Chemical("OH ", 17.0, 0, 0, 0, 0, 0, 0, 0.0, species(HO2) = Chemical("HO2 ", 33.0, 0, 0, 0, 0, 0, 0.0, species(NO) = Chemical("O3 ", 48.0, 0, 0, 0, 0, 0, 0.0, species(NO) = Chemical("NO ", 30.0, 0, 0, 1, 0, 0.0, species(NO2) = Chemical("NO2 ", 46.0, 0, 0, 1, 0, 0.0, species(PAN) = Chemical("PAN _", 121.0, 0, 2, 1, 0, 0.0,</pre>	<pre>species(OD) = Chemical("OD ", 16.0, 0, 0, 0, 0, 0, 0.0, 0.0, species(OP) = Chemical("OP ", 16.0, 0, 0, 0, 0, 0, 0.0, 0.0, species(OH) = Chemical("OH ", 17.0, 0, 0, 0, 0, 0, 0.0, 0.0, species(HO2) = Chemical("HO2 ", 33.0, 0, 0, 0, 0, 0, 0.0, 0.0, species(NO) = Chemical("O3 ", 48.0, 0, 0, 0, 0, 0, 0.0, 0.0, species(NO) = Chemical("NO ", 30.0, 0, 0, 1, 0, 0.0, 0.0, species(NO2) = Chemical("NO2 ", 46.0, 0, 0, 1, 0, 0.0, 0.0, species(PAN) = Chemical("PAN ", 121.0, 0, 2, 1, 0, 0.0, 0.0,</pre>	<pre>species(OD) = Chemical("OD ", 16.0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0 species(OP) = Chemical("OP ", 16.0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0 species(OH) = Chemical("OH ", 17.0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0 species(HO2) = Chemical("HO2 ", 33.0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0 species(O3) = Chemical("O3 ", 48.0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0 species(NO) = Chemical("NO ", 30.0, 0, 0, 1, 0, 0.0, 0.0, 0.0 species(NO2) = Chemical("NO2 ", 46.0, 0, 0, 1, 0, 0.0, 0.0, 0.0 species(PAN) = Chemical("PAN ", 121.0, 0, 2, 1, 0, 0.0, 0.0, 0.0</pre>

CM_Reactions1.inc

```
!-> 03
     P = \delta
         rct(1,k) * xnew(OP) &
       + 0.15*rct(37,k) * xnew(CH3C002 ) * xnew(H02 ) &
       + 0.29 * rct(60,k) * xnew(MAC03) * xnew(H02)
     L = &
         rct(5,k) * xnew(NO) \&
       + rct(6,k)* xnew(NO2) &
       + rct(7,k)* xnew(OH ) &
       + rct(8,k)* xnew(H02) &
       + AQRCK(ICLRC2,K)* xnew(SO2) &
       + rct(43,k)* xnew(C2H4) &
       + rct(44,k)* xnew(C3H6 ) &
       + rct(50,k)* xnew(C5H8) &
       + rct(53,k)* xnew(MACR ) &
       + rct(58,k)* xnew(MVK ) &
       + rcphot(IDA03,K) &
       + rcphot(IDB03,K)
```

xnew(03) = (xold(03) + dt2 * P) / (1.0 + dt2*L)

CM_ChemGroups_ml

!⊳

. .

module ChemGroups ml

```
use ChemSpecs_tot_ml ! => species indices
use OwnDataTypes_ml ! => typ_sp
implicit none
private
! Assignment of groups from GenIn.species:
public :: Init ChemGroups
```

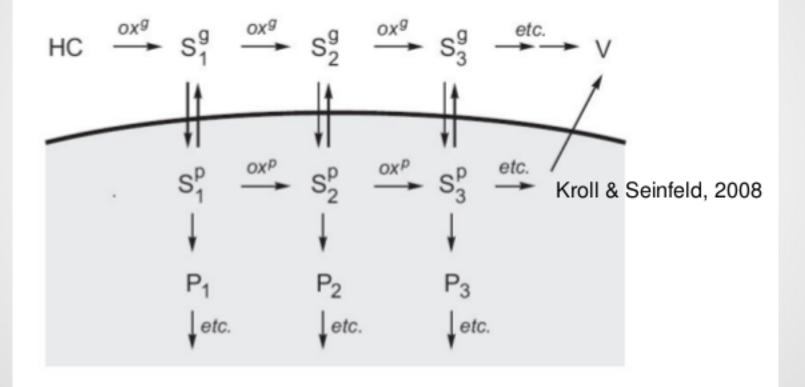
----- Gas/particle species -----

integer, public, parameter :: INDEX_WDEP_OXN_GROUP = 2
integer, public, target, save, dimension(4) ::
WDEP OXN GROUP = (/ HNO3, HONO, NO3 F, NO3 C /)

<

OA, POA, SOA ;-)

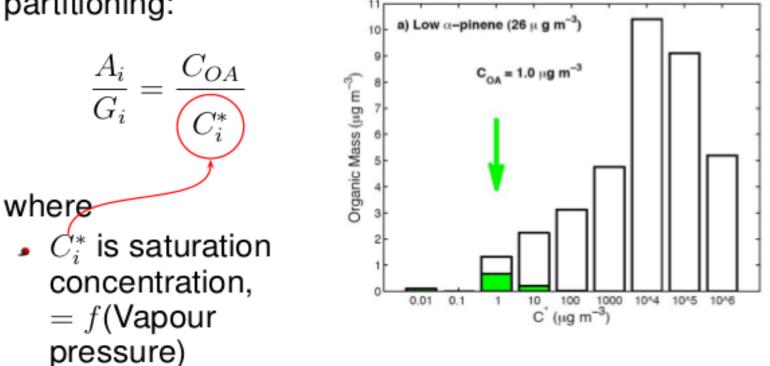
OA: Subject=Horrendous!


Some issues:

- Which precursors? (Isoprene, terpenes, aromatics ..)
- 1000s of compounds, mainly unknown.
- Gas-phase? Aqueous-phase? Particle-phase?
- Thermodynamics/Volatility
- Aging
- Artifact-rich observations!

See e.g. Donahue et al., Atmos. Environ., 2009, Hallquist et al., ACP, 2009

OA cont,


•Need to deal with equilibria, e.g.

OA cont., "VBS":

Volatility Basis Set (Donahue and colleages)

Gas-Particle partitioning:

OA in model code:

Code tracks species, not phase, for advection

- Gas/aerosol fractions calculated using partitioning theory in My_SOA_ml
- Affects deposition, aging reactions etc.

OA in model code:

Origin (GenChem) of reactions looks like:

```
1.2e-11*exp(444.0*TINV) [OH] + apinene = TERPPeroxy

KR02N0 TERPPeroxy + N0 = N02 + 0.08 BSOC_ug1 + 0.672 NON_C_BSOA_ug1

+ 0.813333 BSOC_ug10 + 6.832 NON_C_BSOA_ug10

+ 1.34 BSOC_ug1e2 + 11.256 NON_C_BSOA_ug1e2

+ 3.333333 BSOC_ug1e3 + 28. NON_C_BSOA_ug1e3
```

ie produces range of products of different volatility

OA in CM_Reactions2:

```
    Gas-phase chemistry
```

```
!-> BSOC_UG1
```

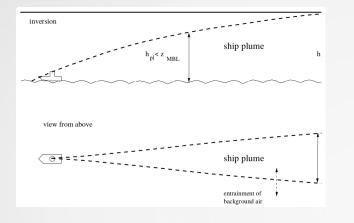
```
P = &
    0.002833*rct(40,k)*xnew(ISR02)*xnew(N0) &
    + 0.0255*rct(47,k)*xnew(ISR02)*xnew(H02) &
    + 0.08*rct(40,k) * xnew(TERPPEROXY ) * xnew(N0 ) &
    + 0.715333*rct(75,k) * xnew(TERPPEROXY ) * xnew(H02 ) &
    + rct(85,k)*xnew(OH) * xnew(BSOC_UG10 )
L = &
    rct(84,k)*xnew(OH)
xnew(BSOC UG1)= ( xold(BSOC UG1) + dt2 * P) /(1.0 + dt2*L )
```

OA final words:

•OA schemes can give many very different answers.

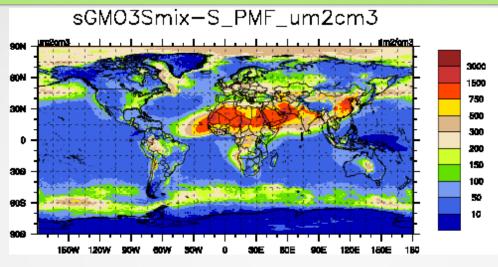
The basic rule:

 \Rightarrow Garbage out:


Garbage in \Rightarrow

SOA twist:

Garbage in the middle!


2015 Changes 1: ShipNOx

- Non-linearity of ozone chemistry can cause ship plumes to
 - Generate too much O3
 - Give too long lifetime for NOx

- ShipNOx:
- Pragmatic solution to provide faster conversion to HNO3 and reduce O3 production over oceans.
- Loosely (very!) based on GEOS-Chem PARANOX (Vinken et al, 2011)
- 50% of ship NO emitted as 'ShipNOx'

2015 Changes 2: Aerosol surface area

- Aerosol surface area (S) now calculated using 'Gerber' functions
 - Empirical, we like ;-)
 - Avoids too much reliance on e.g. MARS/ISORROPIA
 - Unclear if high S due to fine-dust, sea-salt is correct
 - Large implications for e.g. modelling in Asia!

2015 Changes 3: gas-aerosol interactions

- Gas-aerosol rates now depend on surface area
- Replaces older & cruder system
- Links inorganic chemistry to dust & sea-salt

 $k_{\rm X} = \frac{1}{4} c_{\rm X} S \gamma_{\rm X}$

Table 1.1: Main aerosol-uptake reactions in rv4.7 EMEP model						
Reaction		γ				
N ₂ O _{5 (g)}	$\rightarrow 2 \text{ HNO}_{3 \text{ (aq)}}$	Options: Smix, SmixTen, or fixed				
		values. See Sect.1.2.1				
$HNO_{3 (g)} + sea-salt_c$	$\longrightarrow NO_{3,c}$	0.01				
$HNO_3_{(g)} + dust_c$	$\longrightarrow NO_{3,c}$	0.02				
$HO_{2 (g)} + PM_{c}$	$\longrightarrow \frac{1}{2}H_2O$	0.2				
$O_{3 (g)} + dust_c$	$\longrightarrow HO_2$	1.0×10^{-6}				
Notes: NO _{3,c} represents coarse mode nitrate. These uptake reactions are						

applied whenever RH exceeds 40 %.

Options for N2O5 hyrolysis

- N2O5 + H2O -> 2 HNO3
- Important loss of Nx in troposphere!

Options:
 – Smix

 $\gamma = f_{\rm SIA} \gamma_{\rm SIA} + f_{\rm OM} \gamma_{\rm OM} + f_{\rm ss} \gamma_{\rm ss} + f_{\rm du} \gamma_{\rm du}$

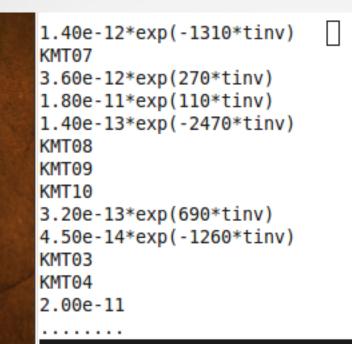
SmixTen = Smix/10Gamma:0.002

- In config_emep.nml
 - USES
 %n2O5hydrolysis =
 'SmixTen'

 These rates are very uncertain and will likely be revised in future. Feel free to test

Miscellaneous 1: Mass balance

Please check : fracmass in RunLog Mass balance 1 Sulphur summas fluxout fluxin fracmass sumint Sulphur 3.4648E+07 4.2275E+07 5.2910E+09 3.6425E+09 1.0117E+00 totddep totwdep ifam totem 1 1.795E+09 4.573E+09 7.888E+09 Mass balance 2 Nitrogen sumint summas fluxout fluxin fracmass Nitrogen 7.3405E+07 1.3389E+08 1.1912E+10 8.8174E+09 1.0078E+00 ifam totddep totwdep totem 5.729E+09 1.245E+10 2.110E+10 2 Mass balance 3 Carbon fluxout fluxin fracmass sumint summas Carbon 3.7819E+11 3.7403E+11 4.5251E+13 4.5136E+13 1.0004E+00 ifam totddep totwdep totem 4.346E+09 1.018E+10 1.080E+11


. .

Miscellaneous 2: GenChem

- A note on GenChem
- Pre-processor
 - Reads ascii chemical equations and description files
 - Produced all CM_ files
- 2013 statement: Needs code-clean and documentation before release. Will try to do in 2013...

 2015 status: Code was 'cleaned' – converted to python for ESX model. Needs to be re-implemented in EMEP and documented (still!)

GenChem input


```
N0 + 03 = N02 ;

OH + N0 = H0N0 ;

H02 + N0 = OH + N02 ;

N0 + N03 = 2.000 N02 ;

N02 + 03 = N03 ;

OH + N02 = HN03 ;

H02 + N02 = H02N02 ;

H02N02 = H02 + N02 ;

OH + H02N02 = N02 ;

N02 + N03 = N0 + N02 ;

N02 + N03 = N205 ;

N205 = N02 + N03 ;

N03 + OH = H02 + N02 ;
```

Miscellaneous 3: Chemical schemes

Have several mechanisms ready processed (almost):

Mechanism	Species	Reactions	Photochemical Reactions	Emitted VOCs (No. Biogenic)	Ref.
CRI v2	465	1202	185	116 (3)	Jenkin et al. (2008)
CRI v2 R5	195	569	96	3 (3)	Watson et al. (2008)
CBM-IV	38	95	13	10(1)	Gery et al. (1989)
CB-05	70	189	27	16 (2)	Yarwood et al. (2005)
OSRM	70	197	25	15(1)	Hayman et al. (2010)
EMEP-EmChem03 ^a	69	135		10 (1)	Simpson et al. (2003a), Andersson-Sköld and Simpson (1999)
EMEP-EmChem09 ^a EMEP-EmChem09soa	72 Ъ	137 b	26 26	10 (1) 11 (2)	This work Bergström et al. (2012) ^c

Miscellaneous 4: odds n' ends

- The model has some 'untried' components
- ISORROPIA instead of MARS/EQSAM
- PointSource_ml
 - Allows stacks, plume rise, gaussian spread (in vertical)
 - (cooperation with NILU/M. Karl)
 - 'probably works' but not 100% integrated in mass budget
- Use at own risk! Please ask!

Papers: chemistry in EMEP model....

•Eliassen, A.; Hov, Ø., et al. A Lagrangian long-range transport model with atmospheric boundary layer chemistry J. Appl. Met., 1982, 21, 1645-1661

•Hov,Ø. Models of the chemical turnover in the atmospheric boundary layer, PhD, University of Oslo, 1981

• Isaksen, I. & Hov,Ø. Calculation of trends in the tropospheric concentration of O3, OH, CO, CH4 and NOx Tellus, 1987, 39B, 271-285

• Simpson, D. Long period modelling of photochemical oxidants in Europe. Calculations for July 1985 Atmos. Environ., 1992, 26A, 1609-1634

• Simpson, D.; Andersson-Sköld, Y. & Jenkin, M. E. Updating the chemical scheme for the EMEP MSC-W oxidant model : current status The Norwegian Meteorological Institute, Oslo, Norway, 1993

• Simpson, D. Biogenic emissions in Europe 2: Implications for ozone control strategies J. Geophys. Res., 1995, 100, 22891-22906

• Kuhn, M.; et al., Intercomparison of the gas-phase chemistry in several chemistry and transport models Atm. Env., 1998, 32, 693-709

• Jonson, J.; et al., Chemical effects of UV fluctuations inferred from total ozone and tropospheric aerosol variations J. Geophys. Res., 2000, 105, 14561-14574B

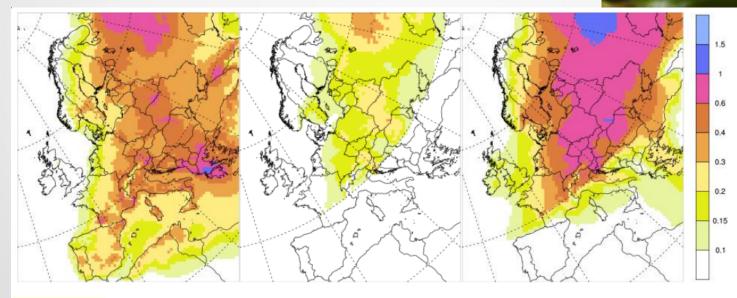
• Andersson-Sköld, Y. & Simpson, D. Comparison of the chemical schemes of the EMEP MSC-W and the IVL photochemical trajectory models Atm. Env., 1999, 33, 1111-1129

• Simpson, D.; et al., The EMEP MSC-W chemical transport model -- technical description Atmos. Chem. Physics, 2012, 12, 7825-7865

And SOA:

Andersson-Sköld, Y. & Simpson, D. Secondary organic aerosol formation in Northern Europe: a model study J. Geophys. Res., 2001, 106, 7357-7374

Simpson, D.; Yttri, K.; Klimont, Z.; Kupiainen, K.; Caseiro, A.; Gelencsér, A.; Pio, C. & Legrand,
 M. Modeling Carbonaceous Aerosol over Europe. Analysis of the CARBOSOL and EMEP EC/OC campaigns J. Geophys. Res., 2007, 112, D23S14


• Simpson, D.; et al., Modelling SOA in EMEP: Experiments with the VBS Approach Transboundary Particulate Matter in Europe, Status Report 4/2004, The Norwegian Institute for Air Research (NILU), Kjeller, Norway, 2009

•Bergström, R.; et al., Modelling of organic aerosols over Europe (2002--2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol Atmos. Chem. Physics, 2012, 12, 8499-8527

•Bergström, R.; Hallquist, M.; Simpson, D.; Wildt, J. & Mentel, T. F. Biotic stress: a significant contributor to organic aerosol in Europe? Atmospheric Chemistry and Physics, 2014, 14, 13643-13660

We 'bugged' the EMEP model ;-)

- Bergström et al, ACP, 2014.
- unplanned' cooperation with Thomas Mentel, arising from a breakfast chat in earlier ECLAIRE meeting.
- mixed models, smog-chambers and
- statistics on honey production

Figure SIE1. Model calculated 6-month mean (Apr-Sep) concentrations of biogenic SOA and biotic stressinduced OA (SIE-OA); **(a)** BSOA from constitutive emissions (reference simulation, Case 0), **(b)** SIE-OA in Case 1 (biotic stress with sesquiterpene (SQT) emissions), **(c)** SIE-OA in Case 2 (biotic stress with emissions of SQT and methyl salicylate). Unit: μ g m⁻³.

Almost final...

- The chemical schemes are getting more and more complex, e.g. SOA, aerosol schemes
- Difficult to summarise or address all issues related to EMEP model
- If interested in e.g. OA, or GenChem:
 - Please ask !

The end :-)