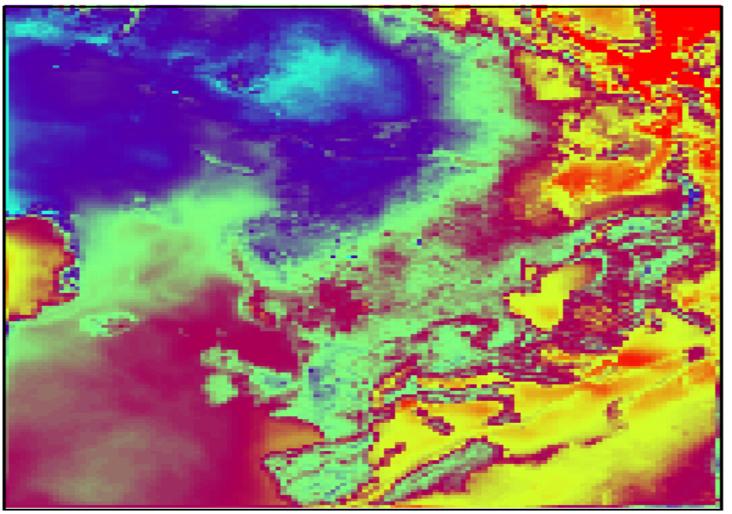


EMEP/MSC-W model: Structure and Technical aspects


Peter Wind

Oslo, 13th October 2015

Basic usage: Pollutants in Europe

SURF_ppb_O3 (ppb)

Norwegian Meteorological Institute

Individual customization

- Default values are provided
- Most common usage are relatively easy to control
 - simulation dates
 - emissions reduction by countries
 - 3D output of pollutants
- Less common applications require more efforts
 - New emission sources
 - Other grid/resolution/projection
 - Other meteorological input
 - Different chemical compounds and chemical processes

Steer the model with config_emep.nml

- Start and end dates of the simulation
 - Startdate = 2013,01,01,000000,
- Restricted domain
 - RUNDOMAIN = 20, 70, 40, 90,
- Emissions to be included
 - USES%FOREST_FIRES = T ...
- Fields to be outputted
 - OutputConcs = 'SO2' ,'ug' ,'2d','AIR_CONCS','SPEC' ,4,
- Nesting (boundary concentrations)
 - MODE=2
 - template_read_BC = 'EMEP_IN.nc'
- Detailed output for individual modules (DEBUG)
 - DEBUG%FORESTFIRE = T
- More details during exercises!

Main structure of the code

- Read grid properties, emissions, landuse and all other input data
- Initiate the different modules for these data
- Time loop over the requested period
 - Read new metdata
 - Transport: Advection and diffusion
 - Emissions
 - Chemistry
 - Deposition (wet and dry)
 - Output the requested concentrations

Main structure of the code: Unimod.f90

call GridRead

- call SetLandUse
- call Emissions
- call Init_XXX
- do while (.not. End_of_Run)
 - if (newmonth) call BoundaryConditions
 - call Meteoread
 - call advecdiff
 - call runchem
 - call WrtChem

enddo

Structure of the code: details

• Grid projection and resolution are taken from meteorological input data.

Vertical levels are given separately in a file (Vertical_levels.txt)

- Many different emission sources (see User guide)
- Time loop: dt_advec = 20 minutes (50 km resolution)
 - Metdata every 3 hours + interpolation
 - 15 Chemistry loops every dt_advec
- Emissions and depositions (wet and dry) are performed under «runchem»

Modules' overview - I

Main: Unimod.f90

Grid: Par_ml.f90, GridValues_ml.f90, InterpolationRoutines_ml.f90

Constants/parameters: ModelConstants_ml.f90 (config defaults) PhysicalConstants_ml.f90

Meteorology Met_ml.f90 (read-in, PBL, kz) MetFields_ml.f90 (defs) BLPhysics_ml.f90 CellMet_f90 (sets for grid cells + L, U*) SubGrid_ml.f90 (stability, L, U*) Micromet_ml.f90 (Ra for landuses) SoilWater_ml.f90 (Sets deep soil water) Emissions Anthropogenic Emissions_ml.f90 EmisDef_ml.f90 Timefactors_ml.f90 Country_ml.f90 Emissions Natural SeaSalt_ml.f90

DustProd_ml.f90

ForestFire_ml.f90

ColumnSource_ml.f90

AirEmis_ml.f90

Meteorologisk Institutt

orological

Modules' overview - II

Atm. Transport Advection_ml.f90 Convection_ml.f90 **Dry Deposition CM_DryDep.inc** DryDep_ml.f90 (Micromet_ml) **Rsurface_ml.f90** Aero_Vds_ml.f90 Wesely_ml.f90 MosaicOutputs_ml.f90 EcoSystems_ml.f90 Wet Deposition Aqueous_n_WetDep_ml.f90 **CM_WetDep.inc**

Landuse Landuse_ml.f90 LandDefs_ml.f90

l) Chemistry CM_Chem*.f90 Solver.f90 (2-step chem. solver) CM_Reactions*.inc (gas/aqueous irrever.) MARS_ml.f90 (EQSAM_ml) My_SOA_ml.f90 ChemFunctions_ml.f90

Modules' overview - III

Boundary/Initial Conditions BoundaryConditions_ml.f90 Nest_ml.f90 ExternalBICs_ml.f90

Input/Output OutputChem_ml.f90 **Output_hourly_ml.f90** NetCDF_ml.f90 EmisGet_ml.f90 **Derived_ml.f90** MosaicOutputs_ml.f90 Io_Progs_ml.f90 Sites_ml.f90

Other MassBudget_ml.f90 TimeDate_ml.f90 Units_ml.f90 Timings_ml.f90

Input data, an essential part of the model:

- Meteorology
- Emissions (many types+time factors)
- Landuse
- Boundary Conditions

Except for meteorology, all other input data can be set to a default value. The data will be interpolated to the required grid.

Emissions overview

Gridded input (gridsox, gridnox, gridnh3...)

- global NetCDF set with 0.5° resolution available
- Forestfire (2002-2014)
- Biogenic VOC
- Soil NOx
- Wind blown dust
- Lightning NOx
- Aircraft NOx
- Volcanoes
- DMS: Not flexible yet
- Roaddust: Europe only

Computational requirements:

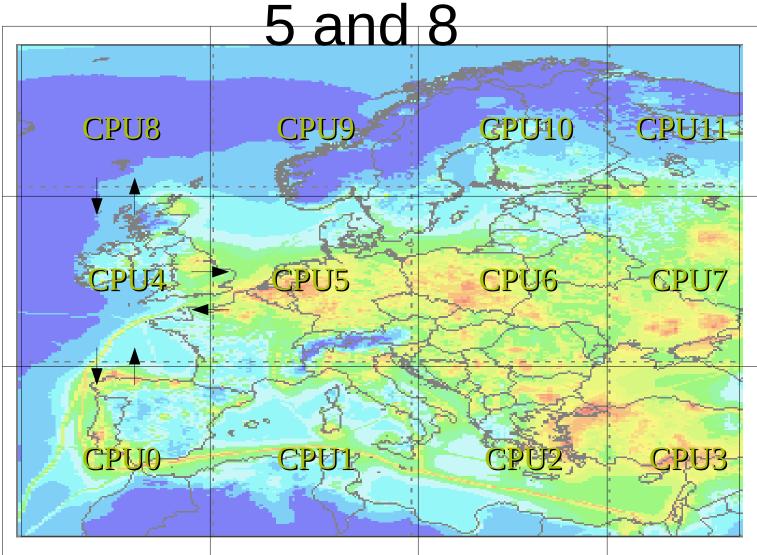
- Linux computer (Fedora, Ubuntu, ...)
- Fortran compiler (ifort (Intel), gfortran (Gnu)...)
- MPI library (OpenMPI,...)
- NetCDF library (version 4 or later)
- 2-4 GB memory
- •30 GB disk space (mainly for metdata)
 - \Rightarrow In practice any linux PC will do!

Requirement details:

Compilation: use 8 bytes reals

- ifort -r8
- gfortran -fdefault-real-8

• Netcdf: by default uses compressed output (i.e. Netcdf4/hdf5). This can be switched off (in emep_config.nml put NETCDF_DEFLATE_LEVEL=-1)



Parallelization:

- •One processor does the computation for one geographical rectangle.
- The processors are exchanging information using MPI
- Communication is only required for Input/Output and advection
- For large grids, the model scales to over 1000 processors

Example 12 processors CPU4 communicates with CPU 0,

How long time take a run:

- Typically one year simulation for EMEP grid (132x111) on 64 CPU, takes 2.3 hours.
- Time will increase with:
 - Larger grid
 - Fewer processors
 - Finer resolution
 - Large output (3D, hourly...)
- 60% chemistry, 20% advection, 20% I/O + communication

Grid flexibility: How does it work?

- The grid properties (projection, resolution, size etc.) are read from the file defining the meteorological data. These must be written as attributes in the NetCDF file.
- The input data which are not in the right grid are automatically interpolated into the proper grid
- The model can read directly WRF output meteorology.
- Making new meteorological input data for other met model from scratch is easy in theory... but not in practice

Resolution

 In principle the projection and resolution of the model are not limited

- Main supported projections:
 - Polar stereographic
 - Spherical (lon-lat)
 - Rotated spherical

 Scales from global (0.5° degree resolution), to regional at fine scales (1 km) have been used

Gridsize up to 1440x1440 has been tested

Hybrid vertical coordinates

 Defined with a set of constants (A_n and B_n) in Vertical_levels.txt

• Pressure at level n defined by $P_n = A_n + B_n P_{surface}$

- Terrain following lower levels (large B, small A)
- Pressure levels at high altitude (large A, small B)
- Levels can be defined differently from the meteorological levels

• (the "old" sigma levels are a particular case of hybrid levels)

The model is evolving constantly, much based on your feedback!

 \Rightarrow Peter.wind@met.no

