

Aerosols in the EMEP MSC-W model

EMEP MSC-W model training course 29-30 April 2019

Particulate Matter (PM)

artistic representation of an EMEP MSC-W particle

The model calculates mass concentrations of the aerosol components in fine and coarse fractions

Primary anthropogenic

emissplit.defaults/specials.pm25 emissplit.defaults/specials.pmco

PPM2.5 = **[** EC_new +EC_age (elemental carbon) *)

+ POM (primary organic matter) + Remaining PPM]_F

coarse PPM = [EC + POM + Remaining PPM**]_C**

*) in emissions EC_new/EC_old = 80/20%

Diff equations in **CM_Reactions2.inc**

Secondary inorganic aerosols (SIA)

SO4 : SO2 oxidation homogeneous by OH; in clouds by H2O2 and O3 (pH depend – Aqueous_mod.f90) Diff equations in CM_Reactions2.inc

NO3 & NH4 (thermodyn equilibrium with HNO3-NH3) – MARS_mod.f90

eqsam4clim is under testing (includes also <u>Na⁺, Cl⁺,</u> Ca²⁺, Mg²⁺, K⁺, organic acids)

coarse NO3 (on surfaces of sea salt and mineral dust) reaction probability 0.01 for SS and 0.02 for Dust

Diff equations in **CM_Reactions2.inc**

SOA (secondary organic aerosol) anthropogenic/biogenic......

- Volatility Basis Set (Donahue and colleages)
- Gas-Particle partitioning:

 $\frac{A_i}{G_i}$

Units in output for OM, ASOA/BSOA, VOC...

OM25 = POM25 + SOA POM_C

- ug gases & particles
- ug_PM particles in ug/m3
- ugC_PM particles in ugC/m3

Sea salt aerosols

The source function for sea salt production is a product of the whitecap area fraction and the shape function (describing the dependence of sea spray flux per unit white-cap area): Monahan et al. (1986) & Mårtensson et al. (2003)

Whitecap coverage: in addition to scheme Monahan and O'Muircheartaigh (1980), two more alternative schemes are implemented: Norris et al. (Ocean Sci., 9, 2013) and Callaghan et al. (Geophys. Res. Lett., 35, 2008)).

Config_module.f90 WHITECAPS = 'Callagan' (or 'Norris', 'Monah')

SeaSalt_mod.f90 to fine and coarse SS

Sea spray as f(U10m, SST) in 10 size fractions, aggregated

Mineral dust: DustProd_mod.f90

- road dust (DUST_ROAD) based on TNO scheme
- windblown (DUST_WB)- online, f(U*, soil moisture, ...))
- Saharan (DUST_SAH) Boundary conditions (EMEP global run 2012-2016)

oloaical

Dry Deposition

Drydep_mod.f90 Venkatram & Pleim (AE, 1999) $v_d = \frac{v_s}{(1 - e^{-rv_s})} \qquad r = r_a + r_s = r_a + 1/v_{ds}$

Aero_Vds_mod.f90

Petroff et al (2008)-based for forest Wesely (1985)- based for other land covers Enhancement Factor 3 for ammonium nitrate

Wet Deposition Aqueous_n_WetDep_mod.f90 In-cloud - scavenging ratios (solubility dependent) Below-cloud - size-dependent collection efficiency CM_WetDep.inc GasParticleCoeffs_mod.f90

PM_{2.5} & PM₁₀

- Policy relevant metrics for air quality
- Output:

PM25 and **PM10** - (sum of) dry aerosol mass

PM25_rh50 and PM10_rh50 - added PM water at Rh = 50% and T=20C (conditioning of PM filter samples prior weighing in gravimetric method)

Used for comparison with observations, assessments, source-receptor tables...

Output: PM2.5_rh50 and PM10_rh50 (at RelHum=50%)

CM_ChemGroups_ml.f90

PM10_GROUP = (/ SO4, NO3_F, NO3_C, NH4_F, PART_OM_F, POM_C_FFUEL, EC_F_WOOD_NEW, EC_F_WOOD_AGE, EC_C_WOOD, EC_F_FFUEL_NEW, EC_F_FFUEL_AGE, EC_C_FFUEL, REMPPM25, REMPPM_C, FFIRE_BC, FFIRE_REMPPM25, SEASALT_F, SEASALT_C, DUST_ROAD_F, DUST_ROAD_C, DUST_WB_F, DUST_WB_C, DUST_SAH_F, DUST_SAH_C /)

Some examples of PM level annual assessment (EMEP Report 1/2018)

Annual mean PM_{10} and $PM_{2.5}$ (2016)

and Exceedance days (2016)

of EU's critical value of 50 ug/m3

of WHO AQG of 25 ug/m3

Analysis of PM episodes in 2016 and 2015

Different aerosol types were dominating during the episodes, indicating that different sources were responsible for high PM)

Norwegian Meteorological

Institute

 \sim

Aerosol evaluation with ACSM

hour

hour

(aerosol chemical speciation monitor)

Norwegian Meteorological Institute

PM trends at EMEP sites (mean, 25 and 75 %-tiles)

See EMEP Report 1/2018

Aerosol extinction & Optical Depth

- 3-D aerosol concentrations
- Specific Extinction Efficiencies (Q_i) for the individual aerosol components (OPAC; Hess et al, 1998)
- Effective cross-sections implicitly accounting for the effect of relative humidity tabulated based on Chin et al. (2002)

AOD_PM_mod.f90

calculates 3-D extinction and AOD for 9 wave lengths for individual aerosol types

Ask for output in **config_emep.nml**

'AOD' ,'', '350nm','AOD:GROUP','MISC', 4, AOD_350nm
'AOD' ,'', '550nm','AOD:GROUP','MISC', 4, AOD_550nm
'DUST' ,'', '550nm','AOD:GROUP','MISC', 4, AOD_DUST_350nm
'EXT' ,'1/m', '550nm','EXT:GROUP','MISC', 3, EXT_550nm

Remember to turn on AOD calculations: USE%AOD = True

Evaluation with AERONET AOD (2016) and EARLINET climatological extinction profiles

0.0

100.0

Evora, Portugal (38.57N ; 7.91W ; 290m)

200.0

EC3553D_AER [Mm⁻¹]

Obs: EARLINET

date: clim. MAM

EMEPalob v280

of measurements: 47

seasonal

400.0

AFBOCOM

300.0

355 nm

Anything I've forgotten?

