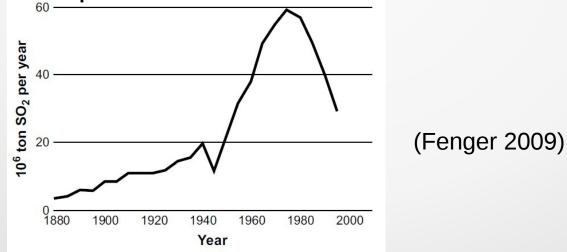


The EMEP MSC-W model – history, status and future

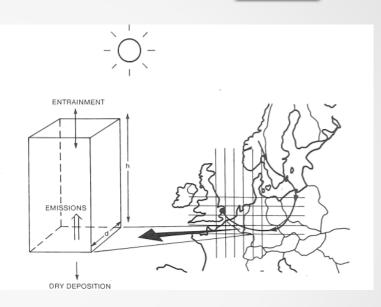

developments

David Simpson

29/04/19

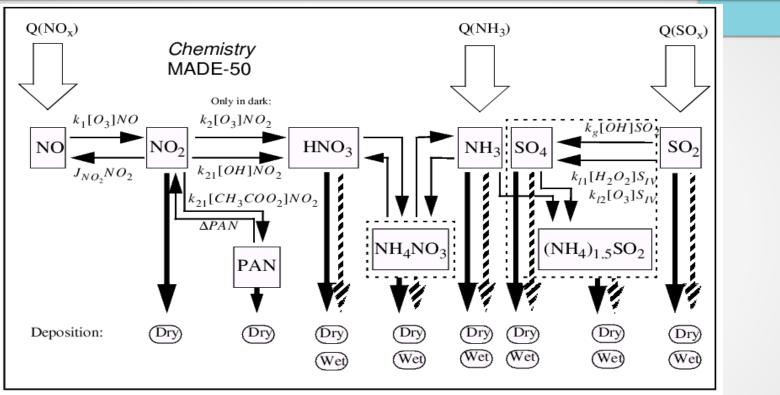
In the beginning: acid rain!

 Swedish/Norwegian scientists found major damage to fish stocks ... suggested SO2 pollution from long-range transport was to blame..... with e.g. UK, Germany, Eastern Europe as suspects



In the beginning:

N=2 (Eliassen& Saltbones)


- •OECD project (1970s)
 - Lagrangian model enabled «fair» calculations of transport between countries
 - First long-range transport model
 - Used to calculate "blame" matrix
 - Sulphur

=> EMEP (MSC-E, MSC-W and CCE)

Next step: NOx

N=5 Hov et al.

•NOx model, 1985 ...

- Lagrangian, performed rather well. Basis of 1st Gothenburg multi-pollutant multi-effect Protocol

Onwards to Ozone (German forests...)



Fig. 8. Calculated mean of daily maximum ozone concentrations (ppb) July 1985.

•O3 model, Simpson, Atmos. Env., 1992, 1993 ...

Lagrangian- also performed rather well!

Eulerian: 1990s - today

Eulerian acid deposition model

- Erik Berge and Roar Skaalin

Designed from scratch for parallel computing

- Basis of today's fast code
- EMEP models are almost perfectly scalable

N~7

- Eulerian acid deposition mid 1990s (Berge et al.)
- Eulerian ozone late 1990s (Jonson et al.)

• 'Unified' \rightarrow Simpson et al, 2003

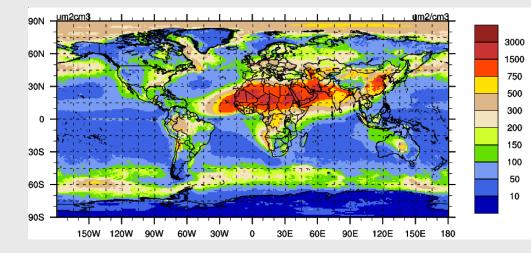
Public domain:

• First: 2007

- •Why?
 - EMEP is funded by ~50 countries should have an open model
 - To encourage use of EMEP model among Parties/scientists
 - To help improve model through co-operations
- To build a community!

Examples:

•EMEP4HR:


- Application of EMEP model to Croatia
- Focus on evaluation of turbulence and Hmix → new routines in core EMEP

•EMEP4UK

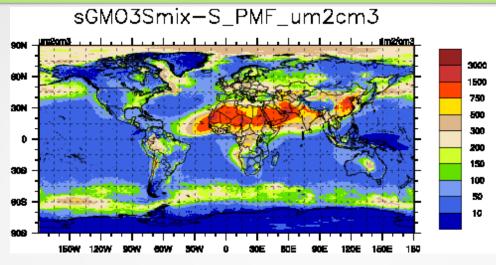
- Application in UK, originally at 5km scale
- Now down to 1km
- Development of WRF+EMEP link
- Extensive evaluation
- Productive! (Vieno et al. papers)

EMEP model

- Chemical transport model
- Open source
- Ozone, Ndep, OA

- EMEP results underpin UN-ECE and EU emission control
- Large focus on comparison with observations, though mainly at European scale so far.
- Very flexible! (wrt scale, meteorology, chemistry)
- Very fast!
- Open source, with frequent updates
- Documentation: Simpson et al., Atmos. Chem. Physics, 2012, Annual EMEP reports

Philosophy, concepts?


• Main ideas:

- to capture the main atmospheric processes, keeping a balance between different components.
- Make sure model is grounded in measurements!
- ... but, prefer sound science over best-possible result for specific compounds – try not to "tune".
- Make sure the model is useful!

Recent changes (since 2015 course)

- Aerosol surface area calculations
- Gas-particle reactions improved
- EmChem16x
- SHIPNOx
- Radiation (PAR calculations)
- Local Fraction (see Peter's talk)
- uEMEP link
- Even more flexible emissions, meteorology

Changes, e.g.: Aerosol surface area

- Aerosol surface area (S) now calculated using 'Gerber' functions
 - Empirical, we like ;-)
 - Avoids too much reliance on e.g. MARS/ISORROPIA/EQSAM
 - Unclear if high S due to fine-dust, sea-salt is correct
 - Large implications for e.g. modelling in Asia!
 - See Stadtler et al., ACP; 2018

Changes cont.: gas-aerosol interactions

- Gas-aerosol rates now depend on surface area
- Replaces older & cruder system
- Links inorganic chemistry to dust & sea-salt
- See Stadtler et al., ACP, 2018

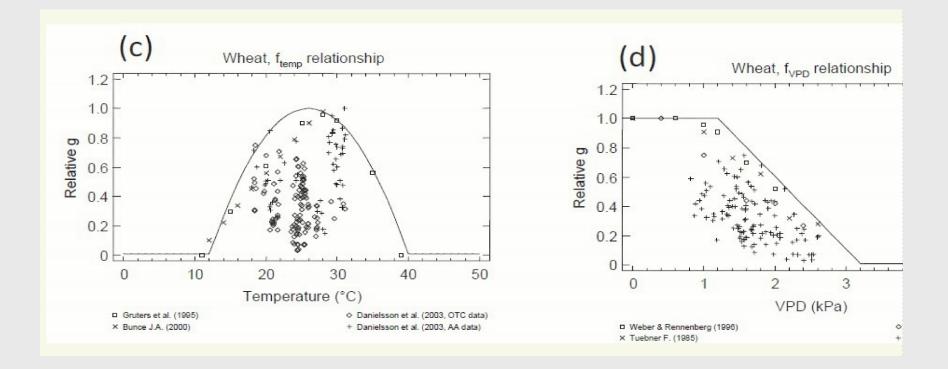

 $k_{\rm X} = \frac{1}{4} c_{\rm X} S \gamma_{\rm X}$

Table 1.1: Main aerosol-uptake reactions in rv4.7 EMEP model										
Reaction		γ								
$N_2O_{5(g)}$	$\rightarrow 2 \text{ HNO}_{3 \text{ (aq)}}$	Options: Smix, SmixTen, or fixed								
		values. See Sect.1.2.1								
$HNO_{3 (g)} + sea-salt_c$	$\longrightarrow NO_{3.c}$	0.01								
$HNO_3_{(g)} + dust_c$	$\longrightarrow NO_{3,c}$	0.02								
$HO_{2}(g) + PM_{c}$	$\longrightarrow \frac{1}{2}H_2O$	0.2								
$O_{3 (g)} + dust_c$	$\longrightarrow HO_2$	1.0×10^{-6}								
Notes: NO ₂ , represents coarse mode nitrate. These uptake reactions are										

Notes: $NO_{3,c}$ represents coarse mode nitrate. These uptake reactions are applied whenever RH exceeds 40 %.

Changes – land-cover (Deposition methods unchanged: Jarvis-type stomatal conductance, DO3SE)

• Parameterises gsto as function of temperature, light, humidity, soil-moisture and phenology. .

EMEP/DO3SE – needs a lot of parameters!

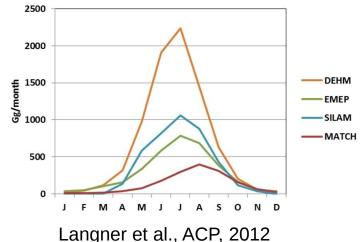
Code	g_{max}^m	f_{min}		f_{phen} factors						$f_{\rm light}$		f_T		f_D			
			ϕ_a	ϕ_b	ϕ_c	ϕ_d	ϕ_e	ϕ_f	ϕ_{A_S}	ϕ_{A_E}	α	Tmin	^T opt	^T max	^D max	D min	$\Sigma D_{\text{Crit.}}$
	Ť						days	days	days	days		$^{\circ}\mathrm{C}$	°Ĉ	$^{\circ}\mathrm{C}$	kPa	kPa	kPa
CF	140	0.1	0.8	0.8	0.8	0.8	1	1	0	0	0.006	0	18	36	0.5	3	
DF	150	0.1	0	0	1	0	20	30	0	0	0.006	0	20	35	1	3.25	
NF	200	0.1	1	1	0.2	1	130	60	80	35	0.013	8	25	38	1	3.2	
BF	200	0.02	1	1	0.3	1	130	60	80	35	0.009	1	23	39	2.2	4	
TC	300	0.01	0.1	0.1	1	0.1	0	45	0	0	0.0105	12	26	40	1.2	3.2	8
MC	300	0.019	0.1	0.1	1	0.1	0	45	0	0	0.0048	0	25	51	1	2.5	
RC	360	0.02	0.2	0.2	1	0.2	20	45	0	0	0.0023	8	24	50	0.31	2.7	10
SNL	60	0.01	1	1	1	1	1	1	0	0	0.009	1	18	36	1.3	3	
GR	270	0.01	1	1	1	1	0	0	0	0	0.009	12	26	40	1.3	3	
MS	200	0.01	1	1	0.2	1	130	60	80	35	0.012	4	20	37	1.3	3.2	
IAM_CR	500	0.01	0.1	0.1	1	0.1	0	45	0	0	0.0105	12	26	40	1.2	3.2	8
IAM_DF	150	0.1	0	0	1	0	15	20	0	0	0.006	0	21	35	1	3.25	
IAM_MF	175	0.02	1	1	0.3	1	130	60	80	35	0.009	2	23	38	2.2	4	

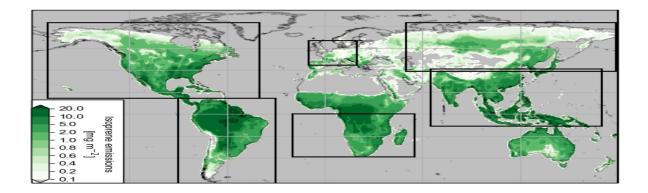
Table S16: Land-cover specific parameters for stomatal conductance (DO₃SE) calculations

Notes: † Units of g_{max}^m are mmole O₃ m⁻² (PLA) s⁻¹

Simpson et al. ACP, 2012

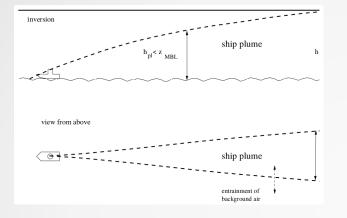
EMEP/DO3SE – and from 2017 a lot more ---added global landcover.. (but with very European surrogates)


Landcover	gmax	fmin	f_phen	#	#	#	#	#	Astart	Aend	flight	ftemp	#	# :
LU	#	#	fac	fac	fac	fac	len	len	(rel-SGS)	(rel EGS)	#	min	opt	max
NDLF EVGN TMPT TREE	140	0.1	0.8	0.8	0.8	0.8	1	1	0	0	0.006	0	18	36
NDLF EVGN BORL TREE	140	0.1	0.8	0.8	0.8	0.8	1	1	0	0	0.006	0	18	36
NDLF DECD BORL TREE	150	0.1	0	0	1	0	20	30	0	0	0.006	0	20	35
BDLF EVGN TROP TREE	150	0.1	0	0	1	0	20	30	0	0	0.006	0	20	35
BDLF EVGN TMPT TREE	150	0.1	0	0	1	0	20	30	0	0	0.006	0	20	35
BDLF DECD TROP TREE	150	0.1	0	0	1	0	20	30	0	0	0.006	0	20	35
BDLF DECD TMPT TREE	150	0.1	0	0	1	0	20	30	0	0	0.006	0	20	35
BDLF DECD BORL TREE	150	0.1	0	0	1	0	20	30	0	0	0.006	0	20	35
BDLF EVGN SHRB	60	0.01	1	1	1	1	1	1	0	0	0.009	1	18	36
BDLF DECD TMPT SHRB	60	0.01	1	1	1	1	1	1	0	0	0.009	1	18	36
BDLF DECD BORL SHRB	60	0.01	1	1	1	1	1	1	0	0	0.009	1	18	36
C3_ARCT_GRSS	270	0.01	1	1	1	1	0	0	0	0	0.009	12	26	40
C3 NARC GRSS	270	0.01	1	1	1	1	0	0	0	0	0.009	12	26	40
C4_GRSS	270	0.01	1	1	1	1	0	0	0	0	0.009	12	26	40
CROP	270	0.01	1	1	1	1	0	0	0	0	0.009	12	26	40
BARE	-1	-1	-1	-1	-1	-1	0	-1	0	0	-1	-1	-1	-1


With LPJ-GUESS providing LAI, phenology for these non-European veg.

Norwegian Meteorological Institute

BVOC in EMEP – also changing


- All BVOC very uncertain (right)
- Global (below): mixes CLM & GLC2000 & EMEP emission factors (e.g. for TEMP_DEC_TREE).

EMEP isoprene emissions (McFiggans et al., Nature, 2019)

Changes cont: ShipNOx

- Non-linearity of ozone chemistry can cause ship plumes to
 - Generate too much O3
 - Give too long lifetime for NOx

- ShipNOx:
- Pragmatic solution to provide faster conversion to HNO3 and reduce O3 production over oceans.
- Loosely (very!) based on GEOS-Chem PARANOX (Vinken et al, 2011)
- 50% of ship NO emitted as 'ShipNOx'

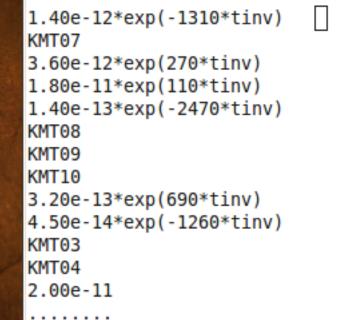

Norwegian Meteorological Institute

EMEP – coming soon....

29/04/19

Coming soon...

- New chemical schemes:
 - EmChem19, CB6, CRI-emep
- BoxChem/GenChem
- EQSAM4
- ISOROPIA (restored)
- Updated land-cover (GLC2015-based)
- Bug-fix, radiation calculations (affects POD)
- Revised biogenic emissions (NO, DMS, ...) via CAMS project
- Documentation!! (Update of 2012 ACP paper)


GenChem

- A note on GenChem
- Pre-processor
 - Reads ascii chemical equations and description files
 - Produces all CM_ files

 2013 statement: Needs code-clean and documentation before release. Will try to do in 2013...

• 2019 status: Oops! Actually, MCM changed, and all schemes had to re-calibrated. Code and documentation almost ready for release. Will try to do in 2019...

GenChem input


```
N0 + 03 = N02 ;

OH + N0 = H0N0 ;

H02 + N0 = OH + N02 ;

N0 + N03 = 2.000 N02 ;

N02 + 03 = N03 ;

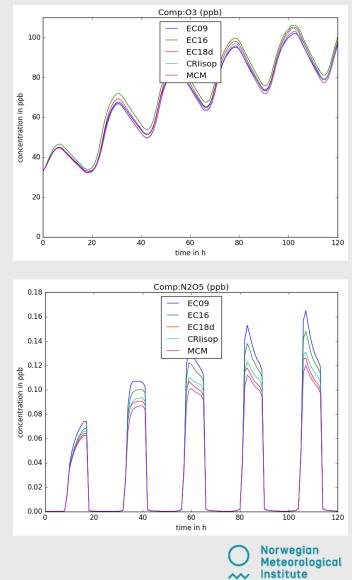
OH + N02 = HN03 ;

H02 + N02 = H02N02 ;

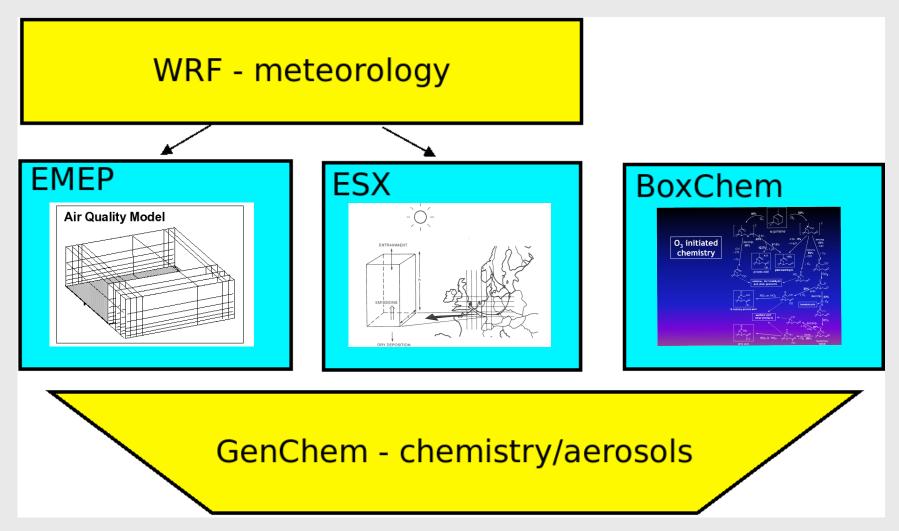
H02N02 = H02 + N02 ;

OH + H02N02 = N02 ;

N02 + N03 = N0 + N02 ;


N02 + N03 = N205 ;

N205 = N02 + N03 ;


N03 + OH = H02 + N02 ;
```

BoxChem/GenChem - Chemical mechanism toolbox

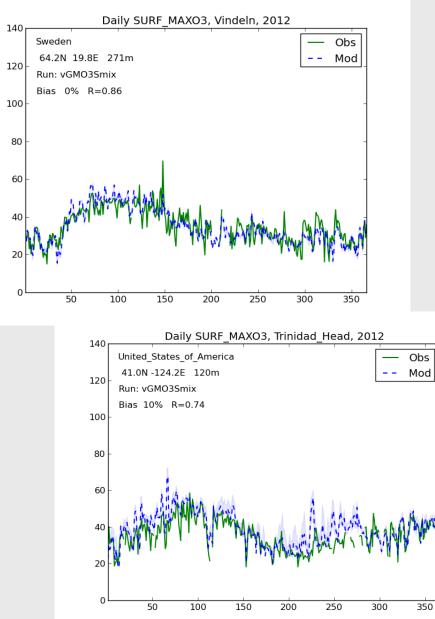
- BoxChem/GenChem
 - Updated EMEP mechanisms for comparability with latest MCM v3.3.1 (2017)
 - EmChem19, CRI, CB6
 - Evaluate new SOA schemes (Hodzic, JPC, 1.5D, ...)

The EMEP/ESX/GenChem 'Family':

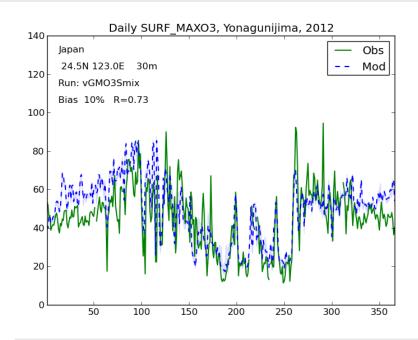
O Norwegian Meteorological Institute

Almost final...

- The chemical schemes are getting more and more complex, e.g. SOA, aerosol schemes
- Difficult to summarise or address all issues related to EMEP model
- If interested in e.g. OA, or GenChem:
 - Please ask !

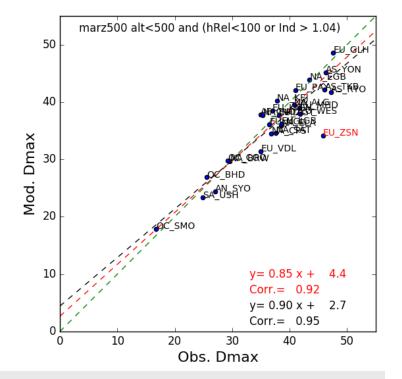


Norwegian Meteorological Institute

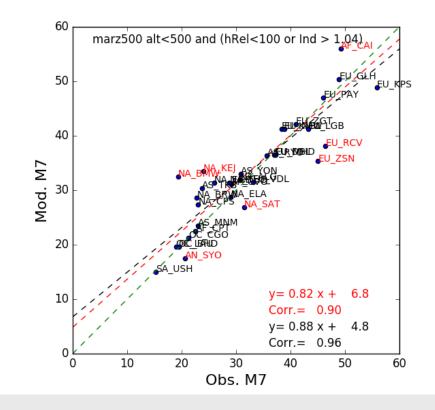

Finally, some nice results ;-)

29/04/19

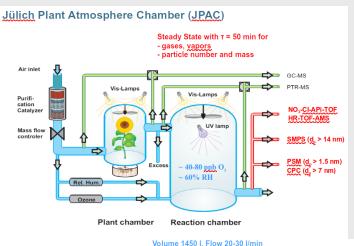
Can we model global ozone? (Mills et al., GCB, 2018)

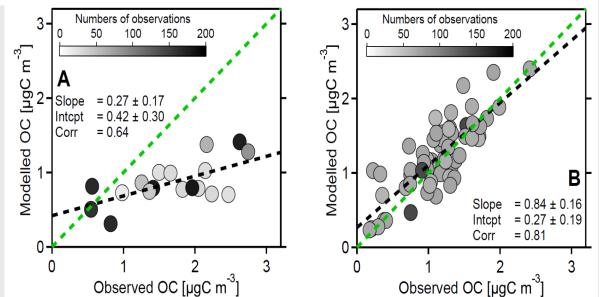


 Daily max O3 (ppb) vs GAW data



Norwegian Meteorological Institute


EMEP 3-D CTM performance – global (GAW)


- Daily max
 O3, M7, 2012
- (From Mills et al 2018, SI)

Modelling organic aerosol – even simple schemes can work..... (McFiggans et al., Nature, 2018)

- BSOA modelled with fixed yields derived from JPAC chamber
- Compare with European (left) and America (right) OC

Norwegian Meteorological Institute

Thanks for listening. The end!

29/04/19