University of Bremen Institute of Environmental Physics

Trends in tropospheric nitrogen dioxide (NO₂) over megacities and large conurbations in the Mediterranean and Middle East from GOME and SCIAMACHY

 Andreas Hilboll¹, A. Richter¹, M. Vrekoussis^{2,1}, J. P. Burrows¹, E. Gerasopoulos³, C. Zerefos^{4,2},
T. Kindap⁵, U. Im⁶, M. Mihalopoulos⁷, M. Kanakidou⁷

¹Institute of Environmental Physics, University of Bremen ²Research Centre for Atmospheric Physics and Climatology, Academy of Athens ³Institute for Environmental Research and Sustainable Development, National Observatory of Athens ⁴Faculty of Geology and Geoenvironment, University of Athens ⁵Eurasia Institute of Earth Sciences, Technical University Istanbul ⁶Institute of Environmental Sciences, Bogazici University Istanbul ⁷Environmental Chemical Processes Laboratory, University of Crete

hilboll@iup.physik.uni-bremen.de

11th IGAC Science Conference / 12th ICACGP Symposium July 14th 2010

Outline

Introduction

Combining GOME and SCIAMACHY time series

Trend analysis

Summary

Introduction

Introduction

- Megacities: pollution hot spots due to high energy use
- NO₂: ozone smog, acid rain, hazardous to human health
- Satellite instruments: long time series, global coverage

Instrument	Equator crossing	Global coverage	Available period	Pixel [km ²]
GOME	10h30	3 days	1995/10-2003/06	40 × 320
SCIAMACHY	10h00	6 days	2002/08-now	30×60

Introduction

- Megacities: pollution hot spots due to high energy use
- NO₂: ozone smog, acid rain, hazardous to human health
- Satellite instruments: long time series, global coverage

Instrument	Equator crossing	Global coverage	Available period	Pixel [km ²]
GOME	10h30	3 days	1995/10-2003/06	40 × 320
SCIAMACHY	10h00	6 days	2002/08-now	30×60

- Differential Optical Absorption Spectroscopy (Lambert-Beer law)
- Subtraction of stratospheric NO₂ from scaled model data
- Correction for average lightpath in atmosphere
- Vertical tropospheric column [molec. cm⁻²] NO₂

Dataset description

- Grid satellite pixels on $0.125^{\circ} \times 0.125^{\circ}$
- Calculate monthly averages
- Define city regions Anka

 For each month, calculate the average of each city region individually

Combined GOME/SCIAMACHY time series

- Most cities investigated show seasonal cycles and a complex increasing pattern
- There are small but significant differences between the GOME and the SCIAMACHY time series
- Challenging to assess the longer term changes and trends

Constructing one consistent time series from GOME and SCIAMACHY

► GOME and SCIAMACHY have very different spatial resolution:

SCIAMACHY: 60 x 30 km², 16 pixels per swath

GOME: 320 x 40 km², 3 pixels per swath

- GOME and SCIAMACHY have very different spatial resolution:
- For averages over large areas, this is no big problem: Monthly averages of NO₂ VC_{trop} over East Central China

- ► GOME and SCIAMACHY have very different spatial resolution:
- For averages over large areas, this is no big problem:
- For very localized sources (like cities), this leads to a relatively diluted signal in the GOME data — the same total amount of NO₂ is averaged over a larger area:

- ► GOME and SCIAMACHY have very different spatial resolution:
- For averages over large areas, this is no big problem:
- For very localized sources (like cities), this leads to a relatively diluted signal in the GOME data — the same total amount of NO₂ is averaged over a larger area:

- ► GOME and SCIAMACHY have very different spatial resolution:
- For averages over large areas, this is no big problem:
- For very localized sources (like cities), this leads to a relatively diluted signal in the GOME data — the same total amount of NO₂ is averaged over a larger area:

- ► GOME and SCIAMACHY have very different spatial resolution:
- For averages over large areas, this is no big problem:
- For very localized sources (like cities), this leads to a relatively diluted signal in the GOME data — the same total amount of NO₂ is averaged over a larger area:

- This leads to inconsistencies in time series spanning both GOME and SCIAMACHY.
- Any trend study of megacities needs to consider this effect

Comparison: GOME and SCIAMACHY measurements 2002/08 – 2003/06

How to derive consistent trends?

Previous studies artificially reduced the resolution of SCIAMACHY measurements:

Publication	Time period covered
van der A et al., 2008	1996-2006
Konovalov et al., 2010	1996-2008 (summer months)

or calculated a correction factor for GOME measurements by convolving SCIAMACHY measurements (Konovalov et al., 2006)

Derived annual trends [% / yr]

City	van der A.	Konovalov (2010)
Baghdad		1.7 ± 0.7
Barcelona		$\textbf{3.7}\pm\textbf{0.8}$
Cairo	$\textbf{1.3} \pm \textbf{1.0}$	_
Teheran	$\textbf{6.5} \pm \textbf{1.0}$	4.0 ± 0.8

Solution 1: Averaging over several SCIAMACHY pixels

The simplest approach:

average 5 neighboring SCIAMACHY pixels. But:

- non-linearities in the retrieval
- what to do with clouds

▶ ...

Solution 2: SCIAMACHY backscan measurements

Idea:

- SCIAMACHY scans 16 × 60x30km / forward scan
- $4 \times 240 \times 30$ km / backward scan
- backscan pixels close in size to GOME
- physically comparable to GOME measurement
- create climatology GOME × SCIA_{forw} / SCIA_{back} for each grid cell

Solution 2: SCIAMACHY backscan measurements

Idea:

- SCIAMACHY scans 16 × 60x30km / forward scan
- $4 \times 240 \times 30$ km / backward scan
- backscan pixels close in size to GOME
- physically comparable to GOME measurement
- create climatology GOME × SCIA_{forw} / SCIA_{back} for each grid cell

Observations:

- Actually works quite well
- Difficult to see overall picture from individual trends
- Different trends per season
- Error quantification and significance analysis are difficult

Solution 3: Fitting a trend using the levelshift method

This study: determination of annual growth rates by fitting

linear function + levelshift + seasonal component

Solution 3: Fitting a trend using the levelshift method

This study: determination of annual growth rates by fitting

linear function + levelshift + seasonal component

Solution 3: Fitting a trend using the levelshift method

This study: determination of annual growth rates by fitting

linear function + levelshift + seasonal component

where the seasonal part of the trend is described by

$$S_t = \sum_{j=1}^{4} \left(\beta_{1,j} \cdot \sin\left(\frac{2\pi t}{12}\right) + \beta_{2,j} \cdot \cos\left(\frac{2\pi t}{12}\right) \right)$$

and $\eta = 1 + (1 - \gamma)U_t$ accounts for a possible levelshift in the seasonal component.

Trend analysis: Results

Trend analysis

Summary

Annual trends over selected megacities 1996-2002 (GOME) & 2003-2009 (SCIAMACHY)

Trend analysis

Summary

Comparison to ground-based measurements

Seasonal differences

Seasonal differences

Observations:

- Winter trends are stronger than summer trends
- Winter values generally show more scattering (due to sampling)

Possible explanations:

- Different chemistry in summer and winter (non-linearities?)
- Seasonal differences in
 - industrial / traffic / energy NO₂ emissions
 - agricultural NO₂ emissions
 - aerosol amount / size distribution / vertical distribution

Observed trends for the MedME region 1996–2009

City	annual trend	summer trend	winter trend
	[% / yr]	[% / yr]	[% / yr]
Algiers	$+$ 8.3 \pm 1.6	+ 8.8 \pm 1.3	_
Ankara	_	+ 1.1 \pm 0.5	_
Athens	_	$\textbf{-4.6} \pm \textbf{1.5}$	_
Baghdad	+ 22.3 \pm 2.7	+ 8.0 \pm 1.8	_
Barcelona	-3.4 ± 1.6	$\textbf{-4.7} \pm \textbf{1.1}$	_
Cairo	+ 9.7 ± 1.6	$+4.9\pm0.7$	+16.7 \pm 2.5
Dimashq	+ 20.6 \pm 3.2	$+10.4\pm1.4$	$+47.4\pm5.5$
Istanbul	_	_	_
Jeddah	+ 3.8 \pm 1.2	$+3.0\pm0.7$	+4.1 \pm 1.4
Madrid	- 4.8 \pm 2.1	$\textbf{-4.5} \pm \textbf{1.3}$	$\textbf{-12.6} \pm \textbf{2.1}$
Milan	-3.0 ± 1.2	$\textbf{-1.6}\pm0.4$	$\textbf{-8.1}\pm\textbf{2.0}$
Riyadh	$+ 6.3 \pm 1.2$	_	+9.9 \pm 1.2
Rome	—	_	_
Teheran	+ 7.3 \pm 1.9	$\textbf{+5.6} \pm \textbf{0.8}$	$+18.9\pm4.7$

Summary

Summary

- Long-term changes in tropospheric NO₂ from satellite
- Different spatial resolutions of GOME and SCIAMCHY result in differences in the behaviour of the two datasets.
- Here, we accounted for the differences between the two instruments by including an offset in the fitting procedure.
- Strong differences between summer and winter trends
- Significant upward trends for most developing cities
- Significant downward trends for most developed cities

Acknowledgements

- Sebastian Mieruch (IUP/Uni-HB)
- Igor Konovalov (RAS, CNRS)
- Björn-Martin Sinnhuber (IUP/Uni-HB)
- TEMIS for providing FRESCO+ data
- IGAC/ACCENT for funding my travel to this conference
- ESSReS for funding my PhD
- DOAS group at IUP/Uni-HB

(http://earth-system-science.org)

(http://doas-bremen.de)

and . . .

Thank you for your attention!!!

Acknowledgements

- Sebastian Mieruch (IUP/Uni-HB)
- Igor Konovalov (RAS, CNRS)
- Björn-Martin Sinnhuber (IUP/Uni-HB)
- TEMIS for providing FRESCO+ data
- IGAC/ACCENT for funding my travel to this conference
- ESSReS for funding my PhD
- DOAS group at IUP/Uni-HB

(http://earth-system-science.org)

(http://doas-bremen.de)

and . . .

Thank you for your attention!!!

