

Institute

Downscaling of the EMEP model using *u*EMEP: where scales meet

Bruce Rolstad Denby, Peter Wind, Hilde Fagerli, Michael Gauss, Matthieu Pommier, Erik van der Swaluw 20.04.2018

Results

Oslo annual mean NO₂ EMEP (0.1°)

Oslo annual mean NO₂ *u*EMEP (50 m)

Overview

- Much time and effort has been put into the development of regional scale modelling
- These models now span many scales, e.g. EMEP is used on the global scale and down to 1 2 km (EMEP4UK, EMEP4NO)
- Even so, these models cannot resolve local near source gradients (e.g. roads) and cannot be validated by stations near to sources
- However, it is possible to cover large regions at high resolution using downscaling or redistribution techniques built into, or appended to, the regional models
- Such methods are often referred to as kernel techniques as they redistribute high resolution proxy or emission data based on a moving kernel (really just a Gaussian dispersion model)
- Application of these methods reveal the discrepancies between local and regional emission inventory methods
- In order to span all scales in future modelling then these emission discrepancies need to be removed

Recent activities in kernel downscaling

- Theobold et al. (2016) 1 km sub-grid within EMEP 50 km but did not account for local or non-local contributions
- Maiheu et al. (2017) European wide kernel downscaling (125 m) for traffic emissions using Chimere (Presentation Stijn Janssen on Friday)
- Sherpa city. European wide user interface (in development) using kernel downscaling and Chimere
- FAIRMODE emission comparison maps have shown discrepancies across Europe in top down and bottom up emissions (Enrico Pisoni and Susana Lopez-Aparicio presentations Tuesday)

Norwegian

Institute

Meteorological

• ... and *u*EMEP

Theobald, M. R., sub-grid model for improving the spatial resolution of air quality modelling at a European scale, GSimpson, D., and Vieno, M.: A eoscientific Model Development Discussions, 2016, 1–22, doi:10.5194/gmd-2016-160, URL http://www. geosci-model-dev-discuss.net/gmd-2016-160/, 2016.

Improved Methodologies for NO2 Exposure Assessment in the EU (2017) Maiheu Bino, Wouter Lefebvre, Heather Walton, David Dajnak, Stijn Janssen, Martin Williams, Lisa Blyth, Sean Beevers. EC Report no.: 2017/RMA/R/1250. http://ec.europa.eu/environment/air/pdf/NO2%20exposure%20final%20report.pdf

A brief overview kernel downscaling methodology

Advantages of the kernel methodology

- The gridded CTM concentration can be conserved, out of respect for regional modellers
- If the removal of the local CTM contribution is properly done then all double counting is avoided
- Instead of using CTMs as boundary conditions then local models can be laid seamlessly on top of existing CTMs allowing large regions to be modelled at high resolution
- For seamless application then the aggregated CTM grid emissions should be the same as the sub-grid distribution
- Only appropriate for non-reactive primary emissions (NO₂ post processing possible)

UEMEP

- *u*EMEP (urban EMEP) consists of two parts
- A method for calculating the **local source** contribution of gridded emissions within EMEP has been developed (*ls-u*EMEP)
- A method for downscaling the local source contributions, by redistribution or replacement, to high resolution sub-grids (*ds-u*EMEP) of ~ 50 m
- Can be applied on both hourly and annual data and on all EMEP resolutions (e.g. 0.1° and 2.5 km)

Local source *Is-u*EMEP

- Built into the EMEP model, source concentration fluxes are followed through the model domain to the surrounding grids
- With this we know the contribution to each grid from all the neighbouring grids, e.g. 5 x 5 or 20 x 20 surrounding grids
- Knowing this we can calculate **source contributions** to or from the surrounding grids
- And/or use this information to **downscale** only the local source contribution

Norwegian Meteorological Institute

Example for traffic in Oslo using *Is-u***EMEP (NO**_x**)** 2 day forecast average at 2.5 km resolution

lonaitude

Downscaling *ds-u***EMEP**

- Standard Gaussian models are applied on either annual mean or hourly data to disperse sub-grid emissions or proxy data
- These are then used to either **replace** the calculated *ls-u*EMEP concentration or to **redistribute** it
- Three examples will be shown:
 - 1. The sub-grid Gaussian dispersion is volume integrated over the EMEP grid and the sub-grid concentrations are normalised and **redistributed** at surface level (preserves volume average grid concentration)
 - 2. The EMEP gridded **emissions are redistributed** over the sub-grid emission data and the sub-grid **dispersion replaces** the EMEP local source contribution (preserves volume average grid concentration only if dispersion and advection is the same)
 - **3. Independent emissions** are used and the sub-grid **dispersion replaces** the EMEP local source contribution (does not preserve volume average grid concentrations)

Example for forecast in Oslo using *ds-u***EMEP (NO_x)** 2 day forecast average at 2.5 km resolution

2. Replaced *Is-u*EMEP using redistributed EMEP emissions

Example calculations for Norway

NO₂ annual mean

Norwegian Meteorological Institute **Annual mean NO₂ concentrations for Southern Norway** *u*EMEP calculation for traffic and shipping at 250 m

EMEP 0.1° uEMEP 250 m 1.5 0.5

Scale is logarithmic (log₁₀) from 1 to 30 ug/m³ Annual mean NO_2 concentrations for Oslo region *u*EMEP calculation for traffic and shipping at 100 m

1.5

0.5

EMEP 0.1° uEMEP 100 m

Scale is logarithmic (log₁₀) from 1 to 30 ug/m³ **Annual mean NO₂ concentrations for Hamar** *u*EMEP calculation for traffic and shipping at 25 m

EMEP 0.1° uEMEP 25 m

Scale is logarithmic (log₁₀) from 1 to 30 ug/m³

Annual mean NO₂ Airbase stations Norway Comparison EMEP (0.1°), *u*EMEP and existing (NBV)

Example in The Netherlands

NH₃ annual mean based on RIVM high resolution emission data

500 m uEMEP with RIVM NH₃ emissions in EMEP

*u*EMEP 500 m R²=0.67

Poorly correlated NH₃ emissions in The Netherlands

- Two emissions datasets are available for NH₃ in the Netherlands:
 - TNO-MAC3 European emission database (0.1°)
 - The original emissions from RIVM (1 km + individual farm buildings)
- Spatial correlation between RIVM and TNO-MAC3 emissions is poor (R²=0.38), but the total emissions are the same

• When TNO-MACC3 emissions are used in EMEP then *u*EMEP spatial correlation decreases from $R^2 = 0.67$ to $R^2=0.43$ Norwegian Meteorological Institute

A summary of *u*EMEP

- The local source calculation in *ls-u*EMEP can be used for downscaling but also for source allocation within local regions
- *ls-u*EMEP is part of the latest open source EMEP/MSC-W code (https://github.com/metno/emep-ctm)
- The downscaling part of *u*EMEP (*ds-u*EMEP) can be applied on annual data (rotationally homogenous Gaussian model) or hourly data (standard Gaussian plume)
- Can be applied anywhere in Norway (have complete proxy data for traffic and shipping) for NO₂ and provides similar results to existing local models
- In The Netherlands NH₃ downscaling provides similar results to existing local models
- Still under development with aim to implement over larger regions but appropriate proxy data on European scale is not directly available

A general summary

- From a regional scale perspective sub-grid downscaling of CTM grids is like magic, allowing regional models to produce local scale concentrations
- From a local scale perspective it is just simple Gaussian dispersion with a different way of including background concentrations
- So what is the advantage of this?
- Given *appropriate* emission/proxy data then large regions can be modelled at high resolution (country, continent)
- It makes local scale modelling available for regional modellers allowing 'scale closure' for regional models
- It clearly reveals discrepancies between regional and local emissions and will help, in the long run, to reduce these inconsistencies
- What is an *appropriate* emission database for this application?
- An appropriate emission database is one that can be aggregated or disaggregated consistently, that includes not just emissions but the underlying data used to make the emissions

Institute

Thank you

2 day forecast for NO₂ at 25 m for all stations in Norway Comparison *u*EMEP and EMEP (2.5 km)

50

Modelled concentration (

100

 $\mu^{g/m}$)

8

50

Modelled concentration (

100

 μ^{g/m^3}