
Norwegian Meteorological Institute 

Downscaling of the EMEP model 
using uEMEP: where scales 
meet 
Bruce Rolstad Denby, Peter Wind, Hilde Fagerli, Michael 
Gauss, Matthieu Pommier, Erik van der Swaluw  
20.04.2018 



Results 

2 

Oslo annual mean NO2 EMEP (0.1o) 

Oslo annual mean NO2 uEMEP (50 m) 



Overview 
• Much time and effort has been put into the development of 

regional scale modelling 
• These models now span many scales, e.g. EMEP is used on the 

global scale and down to 1 - 2 km (EMEP4UK, EMEP4NO) 
• Even so, these models cannot resolve local near source gradients 

(e.g. roads) and cannot be validated by stations near to sources  
• However, it is possible to cover large regions at high resolution 

using downscaling or redistribution techniques built into, or 
appended to, the regional models 

• Such methods are often referred to as kernel techniques as they 
redistribute high resolution proxy or emission data based on a 
moving kernel (really just a Gaussian dispersion model) 

• Application of these methods reveal the discrepancies between 
local and regional emission inventory methods 

• In order to span all scales in future modelling then these 
emission discrepancies need to be removed 
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Recent activities in kernel downscaling 
• Theobold et al. (2016) 1 km sub-grid within EMEP 

50 km but did not account for local or non-local 
contributions 

 
• Maiheu et al. (2017) European wide kernel 

downscaling (125 m) for traffic emissions using 
Chimere (Presentation Stijn Janssen on Friday) 
 

• Sherpa city. European wide user interface (in 
development) using kernel downscaling and 
Chimere 
 

• FAIRMODE emission comparison maps have 
shown discrepancies across Europe in top down 
and bottom up emissions (Enrico Pisoni and 
Susana Lopez-Aparicio presentations Tuesday) 
 

• … and uEMEP 
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A brief overview kernel downscaling methodology 
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Advantages of the kernel methodology 

• The gridded CTM concentration can be conserved, out of 
respect for regional modellers 

• If the removal of the local CTM contribution is properly 
done then all double counting is avoided 

• Instead of using CTMs as boundary conditions then local 
models can be laid seamlessly on top of existing CTMs 
allowing large regions to be modelled at high resolution 
 

• For seamless application then the aggregated CTM grid 
emissions should be the same as the sub-grid distribution 

• Only appropriate for non-reactive primary emissions (NO2 
post processing possible) 
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uEMEP 
• uEMEP (urban EMEP) consists of two parts 

 
• A method for calculating the local source 

contribution of gridded emissions within 
EMEP has been developed (ls-uEMEP)  
 

• A method for downscaling the local source 
contributions, by redistribution or 
replacement, to high resolution sub-grids 
(ds-uEMEP) of ~ 50 m 
 

• Can be applied on both hourly and annual 
data and on all EMEP resolutions (e.g. 0.1o 
and 2.5 km) 
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Local source ls-uEMEP 
• Built into the EMEP model, source 

concentration fluxes are followed 
through the model domain to the 
surrounding grids 

• With this we know the contribution to 
each grid from all the neighbouring 
grids, e.g. 5 x 5 or 20 x 20 surrounding 
grids 

• Knowing this we can calculate source 
contributions to or from the 
surrounding grids 

• And/or use this information to 
downscale only the local source 
contribution 
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Example for traffic in Oslo using ls-uEMEP (NOx) 
2 day forecast average at 2.5 km resolution 
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Downscaling ds-uEMEP 
• Standard Gaussian models are applied on either annual mean or 

hourly data to disperse sub-grid emissions or proxy data  
• These are then used to either replace the calculated ls-uEMEP 

concentration or to redistribute it 
• Three examples will be shown: 

1. The sub-grid Gaussian dispersion is volume integrated over the EMEP 
grid and the sub-grid concentrations are normalised and redistributed at 
surface level (preserves volume average grid concentration) 

2. The EMEP gridded emissions are redistributed over the sub-grid 
emission data and the sub-grid dispersion replaces the EMEP local 
source contribution (preserves volume average grid concentration only if 
dispersion and advection is the same) 

3. Independent emissions are used and the sub-grid dispersion replaces 
the EMEP local source contribution (does not preserve volume average 
grid concentrations) 
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3. Replaced ls-uEMEP using 
independent emissions 
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2. Replaced ls-uEMEP using 
redistributed EMEP emissions 

Example for forecast in Oslo using ds-uEMEP (NOx) 
2 day forecast average at 2.5 km resolution 
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Example calculations for Norway 
 

NO2 annual mean 
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Scale is logarithmic (log10) 
from 1 to 30 ug/m3 

Annual mean NO2 concentrations for Southern Norway 
uEMEP calculation for traffic and shipping at 250 m 

EMEP 0.1o 

uEMEP 250 m 
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Scale is logarithmic (log10) 
from 1 to 30 ug/m3 

Annual mean NO2 concentrations for Oslo region 
uEMEP calculation for traffic and shipping at 100 m 

EMEP 0.1o 

uEMEP 100 m 
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Scale is logarithmic (log10) 
from 1 to 30 ug/m3 

Annual mean NO2 concentrations for Hamar 
uEMEP calculation for traffic and shipping at 25 m 

EMEP 0.1o 

uEMEP 25 m 
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Annual mean NO2 Airbase stations Norway 
Comparison EMEP (0.1o), uEMEP and existing (NBV) 
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Example in The Netherlands 
 

NH3 annual mean based on RIVM high 
resolution emission data 
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uEMEP 500 m R2=0.67 

EMEP 0.1o R2=0.43 

500 m uEMEP with RIVM NH3 emissions in EMEP 



• Two emissions datasets are available for NH3 in the Netherlands: 
- TNO-MAC3 European emission database (0.1o) 
- The original emissions from RIVM (1 km + individual farm buildings) 

• Spatial correlation between RIVM and TNO-MAC3 emissions is 
poor (R2=0.38), but the total emissions are the same 
 
 
 
 
 
 

• When TNO-MACC3 emissions are used in EMEP then uEMEP 
spatial correlation decreases from R2 = 0.67 to R2=0.43 
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Poorly correlated NH3 emissions in The Netherlands 

TNO-MAC3 0.1o emissions RIVM emissions Scatter RIVM/TNO emissions 



A summary of uEMEP 
• The local source calculation in ls-uEMEP can be used for 

downscaling but also for source allocation within local regions 
• ls-uEMEP is part of the latest open source EMEP/MSC-W code 

(https://github.com/metno/emep-ctm) 
 

• The downscaling part of uEMEP (ds-uEMEP) can be applied 
on annual data (rotationally homogenous Gaussian model) or 
hourly data (standard Gaussian plume) 

• Can be applied anywhere in Norway (have complete proxy data 
for traffic and shipping) for NO2 and provides similar results to 
existing local models 

• In The Netherlands NH3 downscaling provides similar results to 
existing local models 

• Still under development with aim to implement over larger 
regions but appropriate proxy data on European scale is not 
directly available  
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A general summary 
• From a regional scale perspective sub-grid downscaling of CTM grids 

is like magic, allowing regional models to produce local scale 
concentrations 

• From a local scale perspective it is just simple Gaussian dispersion 
with a different way of including background concentrations 

• So what is the advantage of this? 
• Given appropriate emission/proxy data then large regions can be 

modelled at high resolution (country, continent) 
• It makes local scale modelling available for regional modellers 

allowing ‘scale closure’ for regional models 
• It clearly reveals discrepancies between regional and local emissions 

and will help, in the long run, to reduce these inconsistencies 
 

• What is an appropriate emission database for this application? 
• An appropriate emission database is one that can be aggregated or 

disaggregated consistently, that includes not just emissions but the 
underlying data used to make the emissions 
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Thank you 
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2 day forecast for NO2 at 25 m for all stations in Norway 
Comparison uEMEP and EMEP (2.5 km) 
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