

Air Quality Modelling and Downscaling Activities and Methods in China

Xuemei Wang, Ming Chang Jinan University & Sun Yat-sen University 2017.04.19

Outline

- Introduction
- Current Status of Air Quality Modelling
- Urban Simulation
- Jinan University's role in AIRQUIP

Air pollution now kills more people than high cholesterol

By Brad Plumer, Published: December 20, 2012 at 12:31 pm 🛛 E-mail the writer 🦘

The Lancet recently unveiled <u>a major overview</u> of global health risks — and one of the most eye-catching <u>papers</u> highlighted just how deadly air pollution has become over the past two decades.

In 2010, 3.2 million people died prematurely from outdoor air pollution, mainly in Asia, and mainly from soot and other pollutants from diesel cars and trucks. That means outdoor air pollution is now a bigger health risk than high cholesterol — and, along with obesity, one of the fastest-growing health risks in the world. (Air pollution only killed about 800,000 people worldwide in 1990, although measurements were much cruder back then.)

A Chinese motorist wears a mask as she makes her way along a smog filled road in Hefei, east China's Anhui province on Nov. 29, 2011. (STR – AFP/Getty Images)

Haze and PM_{2.5} Pollution in China

Trends of the visibility in the past 50 years

番~

Development of city clusters in China pose a great scientific challenge

The world's cities by size class of urban settlement, in 2014 (world urbanization prospects, UN, 2014)

Future trends of energy structure in China

Trends of emissions in China: 1990-2010

Courtesy: Kebin He, Tusinghua U.

Flow, turbulence, and pollutant dispersion in urban atmospheres

Urban air pollution, urban heat island/urban warming Coupling with global warming and regional air pollution

•In the last 30 years, Urban air temperature of Guangzhou increased 0.41°C/10yr, larger than the increase by global warming (0.19 °C/10yr)

• In hot regions, urban ventilation and solar sheltering are more significant.

Temperature increases in Guangzhou

The impacts of each factor have not been clearly known

Multi-scale complex structure of atmospheric motions in UBL

Urban Thermal and Dynamics effects

Global<- ->Intercontinental

Global<- ->Intercontinental<- ->Regional

Global<- ->Intercontinental<- ->Regional<- ->Metropolitan

Global<- ->Intercontinental<- ->Regional<- ->Metropolitan<- ->City

Global<- ->Intercontinental<- ->Regional<- ->Metropolitan<- ->City<- ->Street

番

The physical modeling system: ----A spectrum of coupled scales

Continental Scales

Global Scales

Current technology for operational weather and climate prediction

Regional Scales

Urban Scales

Challenge in representing multi-scale urban microclimate

Developing WRF-Urban modeling capability

INTERNATIONAL JOURNAL OF CLIMATOLOG Int. J. Climatol. **31**: 273–288 (2011) Published online 7 June 2010 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/joc.2158

Royal Meteorological Society

The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems

Fei Chen,^a* Hiroyuki Kusaka,^b Robert Bornstein,^c Jason Ching,^{d†} C. S. B. Grimmond,^e Susanne Grossman-Clarke,^f Thomas Loridan,^e Kevin W. Manning,^a Alberto Martilli,^g Shiguang Miao,^h David Sailor,ⁱ Francisco P. Salamanca,^g Haider Taha,^j Mukul Tewari,^a Xuemei Wang, Andrzej A. Wyszogrodzki^a and Chaolin Zhang^{h,1}

WRF-urban modeling system

- Coupling the Noah land surface model (LSM)
- Two urban canopy models (UCM)
 - Single layer urban-canopy model (SLUCM, based on Kusaka 2001).
 Released in WRF V2.2 (Dec. 2006).
 - Multi-layer UCM (Building Effect Parameterization, BEP) by Martilli et al. (2002). Released in WRF V3.1

Roughness sublave

Urban canopy layer

Lowest model level

The Noah Land Model

Wind profile Fluxes Radiation Drag Wake diffusion Radiation Radiat

Chen et al., 2011, Intl. J. Climatology

Rapid Urban Expansion in PRD and YRD

Urbanization Increases both Day- and Night-time 2-m Temperature

Simulation Urban - Simulation PRE-Urban averaged for March 2001

PRD has smaller increase of 2-m temperature than YRD

Urbanization Decreases both Day- and Night-time 10-m Wind Speed

Nighttime Diff.of 10-m wind (ms-1)

Daytime Diff.of 10-m wind (ms-1)

PRD has larger decrease of 10-m wind speed than YRD, and daytime reduction in wind speed is larger

Urbanization Increases Surface Ozone Concentration

Daytime Diff. of o3(%)

Urbanization increases surface ozone (more for nighttime) PRD has larger increase than YRD

Urban canopy model (UCM) can be coupled into meso-scale models, but UCM model requires further evaluation /improvement.

Initial results from Phase 2 of the international urban energy balance model comparison

C. S. B. Grimmond,^a* M. Blackett,^a M. J. Best,^b J.-J. Baik,^c S. E. Belcher,^d J. Beringer,^e S. I. Bohnenstengel,^d I. Calmet,^f F. Chen,^g A. Coutts,^e A. Dandou,ⁱ K. Fortuniak,^j M. L. Gouvea,^a R. Hamdi,^k M. Hendry,^b M. Kanda,¹ T. Kawai,^m Y. Kawamoto,ⁿ H. Kondo,^o E. S. Krayenhoff,^p S.-H. Lee,^c T. Loridan,^a A. Martilli,^q V. Masson,^r S. Miao,^s K. Oleson,^h R. Ooka,ⁿ G. Pigeon,^r A. Porson,^{b,d} Y.-H. Ryu,^c F. Salamanca,^q G.J. Steeneveld,^t M. Tombrou,ⁱ J. A. Voogt,^u D. T. Young^a and N. Zhang^v

For 32 urban land surface schemes, No individual model performs best for all fluxes. Poor choice of parameter values can cause a

much worse performance.

ABSTRACT: Urban land surface schemes have been developed to model the distinct features of the urban surface and the associated energy exchange processes. These models have been developed for a range of purposes and make different assumptions related to the inclusion and representation of the relevant processes. Here, the first results of Phase 2 from an international comparison project to evaluate 32 urban land surface schemes are presented. This is the first large-scale systematic evaluation of these models. In four stages, participants were given increasingly detailed information about an urban site for which urban fluxes were directly observed. At each stage, each group returned their models' calculated surface energy balance fluxes. Wide variations are evident in the performance of the models for individual fluxes. No individual model performs best for all fluxes. Providing additional information about the surface generally results in better performance. However, there is clear evidence that poor choice of parameter values can cause a large drop in performance for models that otherwise perform well. As many models do not perform well across all fluxes, there is need for caution in their application, and users should be aware of the implications for applications and decision making. Copyright © 2010 Royal Meteorological Society

KEY WORDS urban climate; energy balance; surface atmosphere exchanges; land surface modelling; sustainable cities; radiation; turbulent heat fluxes; evaporation

Challenge: from Real World to UCM

Urban canopy model (UCM) parameter space

Extract building span and height

Time series Google-Earth images for the same location show the building pictures with different solar angle

 2^{th} Oct 2009 27^{th} Oct 2010 $\alpha:19^{\circ}$, $\theta:68^{\circ}$ $\alpha:18^{\circ}$, $\theta:144^{\circ}$ $\alpha:$ satellite elevation/off nadir angle; $\theta:$ satellite azimuth

Similar to the steropair (*Kazuhiko AKENO, 1996*), we could obtain building span and

height with GIS and RS technologies, and make a 3D map with building models.

Principle of steropair

Calculation of building height

 $H = \frac{d}{K}$ $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \times GSD$ $K = \sqrt{\cot(\alpha_1)^2 + \cot(\alpha_2)^2 - 2\cos(\theta)\cot(\alpha_1)\cot(\alpha_2)}$

H: building height, GSD: cell size θ : azimuth difference between two images α_1 : satellite1 elevation , α_2 : satellite2 elevation

$$\begin{cases} \Delta X = H \sin p / \tan \theta \\ \Delta Y = H \cos p / \tan \theta \end{cases}$$

H: building height P: satellite azimuth, θ : satellite elevation

Dai W. and Wang X.M., 2015

A 3D map of building models in Guangzhou city

Dai W. and Wang X.M., 2015

Over 77 thousand 3D building models

Urban Morphology Parameters

 h_c

• mean building height:
$$\overline{h} = \frac{\sum_{i=1}^{N} h_i}{N}$$

• mean building height $\overline{h}_{AW} = \frac{\sum_{i=1}^{N} A_i h_i}{\sum_{i=1}^{N} A_i}$
• mean building height $\overline{h}_{AW} = \frac{\sum_{i=1}^{N} A_i h_i}{\sum_{i=1}^{N} A_i}$
• Building Plan area
fraction:
• Building Plan Area
Density:
• Building Plan Area
Building Plan Area
Density:
• Building Plan Area
Density:
• Building Plan Area
Building P

Burian et al., 2007, Development and assessment of the second generation national building statistics database.

1-km UCPs in Guangzhou

WRF-Urban Experiment Setup

Case2

Dai W. and Wang X.M., 2015

UCPs in WRF-urban replaced by GZ-UCPs

Model BEP variable	GZ-UCPs (new)		URBPARM.TBL (old)	
LF_URB2D	Plan area fraction	LamP		Function of Street width & Building width
HGT_URB2D	Area weighted mean building height	awaHT		Function of building Distribution
HI_URB2D	Distribution of building heights	Histogram	Building Distribution	5 m : 33 % 10 m : 34 % 15 m : 33 %
LB_URB2D	Building surface to plan area ratio	LamB		Function of Street width、 Building width and Building Distribution
			Street width (m)	15
			Building width (m)	15
FRC_URB	Urban fraction	LamU	Urban fraction	0.95 %

Improved the Simulation of Wind Speed

Work by my team: With the high-resolution urban canopy model coupled with WRF, the accuracy of wind prediction in cities are much improved.

Wang X.M.*, Liao J.B., Zhang J., et al., 2014. J. Appl. Meteorol. Clim., 53, 346-362.

Vertical distribution of wind speed

40

Vertical section of V wind distribution

Wide range of network measurement with sufficient resolution are needed and challenge

Outdoor field measurements setup in my group

Lead by Dr. Jian Hang Experiments on building density, thermal storage, and color etc. to investigate the turbulence and and thermal environment.

More parameters can be obtained to improve model, such as how length/wide ratio influence the flow

Jinan University's role in AIRQUIP

- Improvement of regional Air quality forecasts (WP 2.2 and 2.3)
 - Improvement of diurnal variation of NO₂ and O₃
 - Improvement of chemical scheme with respect to PM
 - Improvement of high resolution input data
- Assist to Operational downscaling method in PRD (WP 4.2)
 - Operational downscaling of PANDA data for Chinese megacities
- Assist to Outreach (WP6)
 - Organization of user meetings
 - Reporting

Jinan University's role in AIRQUIP

- New downscaling method will be used in this project
- 1. Gaussian dispersion models
- 2. Redistributes existing model concentrations at high resolution within the model grid.

EMEP grid concentrations (left) and redistributed traffic concentrations (right) using the uEMEP redistribution methodology for Oslo (EMEP, 2016).

Thank you

