

Institute

Continuation of PANDA forecasts and EMEP model improvement in China

Matthieu Pommier

Persons involved: Michael Gauss, Hilde Fagerli, Peter Wind, Agnes Nyiri, Alvaro Valdebenito, Anna Benedictow, Heiko Klein.

Norwegian Meteorological Institute, Oslo, Norway

matthieu.pommier@met.no

AirQUIP2017 - Oslo - April 19th 2017

How the forecasts are set-up?

Set up for EMEP

- Meteorological data: C-IFS (ECMWF) 0.1°x 0.1°
- BCs from ECMWF
- Emission: PanHam = HTAP + MEIC 2012 (Chinese inventories) 0.1°x 0.1°
- Domain: 15-55°N, 90-135°E
- Forecast delivers at 02:00 UTC

What do we learn with the forecasts?

What do we learn with the forecasts?

Some days, O_{3} works better in comparison with observations:

Since March 2017, a version with NO_x reduced by 35% is also running \rightarrow a comparison can be done. FMI does this reduction in their forecast. This number comes from their comparison with NO₂ from GOME2

> Norwegian Meteorological

What do we learn with the forecasts?

... before to get the data for 2016 and 2017 to compare the forecast outputs.

Example for 2012:

- runs using the same emissions as the forecasts 0.1°x 0.1°
- BCs from a globlal run (EMEP at 0.5°x 0.5°)
- wind fields from ECMWF 0.1°x 0.1°

Good agreement with PM_{2.5}

Example for 2012:

Overestimation in $O_3 \rightarrow$ clear link with the titration of O_3

Norwegian Meteorological

IASI instrument on board MetOp-A used for this comparison

Example of comparsion done:

CO total column (IASI): IASI only sensitive to the total column (George et al., ACP 2009 & Pommier al., ACP 2010).

- EMEP outputs are co-located to the overpasses.
- EMEP outputs are interpolated to the satellite altitude levels and then convolved.
- → hourly 3d outputs from EMEP used: time and space demanding!
- → select 5 regions

Institute

		DJF	MAM	JJA	SON
	HKG	r=0.08 NMB=107.31 %	r=0.5 NMB=67.43%	r=0.74 NMB=-26.9%	r=0.47 NMB=2.27%
	SHA	r=0.38 NMB=147.1%	r=0.05 NMB=78.32%	r=0.61 NMB=- 16.99%	r=0.13 NMB=15.28%
	BEI	r=0.8 NMB=101.22 %	r=0.72 NMB=29.3%	r=0.74 NMB=-4.88%	r=0.75 NMB=15.87%
Lower bias	BG1	r=0.31 NMB=7.68%	r=0.39 NMB=1.47%	r=0.66 NMB=- 31.04%	r=0.46 NMB=- 28.38%
	BG2	r=0.78 NMB=167.28 %	r=0.81 NMB=41.58%	r=0.88 NMB=-22.1%	r=0.75 NMB=23.5%

High r Low bias

DJF corresponds to the most misrepresented season by the model, in comparison with the satellite measurements

→ IASI may also be probably blamed

- EMEP MSC-W has been used for decades to calculate sourcereceptor relationships between European countries (including Russia).
- Currently: calculations done for 28 European cities on a daily basis for O_3 and PM_{10}

(http://policy.atmosphere.copernicus.eu/CitySourceAllocation.html).

 \rightarrow give policy makers an indication of how much of their local air pollution is due to indigenous (local) sources and how much is imported from outside.

 \rightarrow **compliance monitoring**; ex: on a particular day, calculations show if local policy is efficient or not

Similar runs are done over Asia (Delhi, Beijing, Shanghai and Guangzhou): first results

0

Jan: Large impact for Delhi. PM on Increase in O₂ in Beijing and Shanghai Jul: Beijing largely impacted by external emissions (obvious for PM) Increase in NO for both months in Guangzhou and Dehli

O₃ NO NO₂ SO₂ CO PM10 PM2.5 EC

Local chemistry in cities will often be affected by titration: NO and O_3 well anti-correlated

outside the cities (clean areas) there is no titration, and O_3 is reduced there when emissions are reduced \rightarrow reduction signal from outside is then transported into the cities

Winter: titration signal tends to dominate (photochemical production is much weaker but the NO+O₃ reaction also proceeds during winter close to emission sources) Summer: transport signal tends to dominate (photochemical production of O₃ is also much stronger because of more sunlight and largely sensitive to the precursors)

Increase in NO in Guangzhou and Dehli not clear for July:

- Linked to titration, maybe increase in NO due to decrease of O_3

- Not seen over Beijing and Shanghai due to surrounding environment (desert, sea) ?

Conclusions

- Start to have a good experience with the forecast over China thanks to the PANDA project
- > Simulation of $PM_{2.5}$ works well \rightarrow of course larger peaks still mis-represented by EMEP
- > Issue with the $O_3 \rightarrow$ titration probably main cause, especially with a regional model for a urban comparison
- \rightarrow test with reduced NO will be informative
- \rightarrow downscaled output with uEMEP will certainly improve the comparison and so the forecasts
- Improved emissions and observations for the comparison will be also important materials.